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Abstract

The main focus of the present thesis lays on general Lubin-Tate (ϕ,Γ)-modules.
Before heading towards this theory, we discuss some general facts about monoid and
continuous group cohomology as well as double complexes and limits of complexes.
After these preliminaries we first show as in the classical case that the category of
étale (ϕ,Γ)-modules is equivalent to the category of Galois representations of the
absolute Galois group of K with coefficients in OL, where K|L and L|Qp are finite
extensions.
Using (ϕ,Γ)-modules, we then compute Iwasawa cohomology of such a representation
and define a reciprocity map. Afterwards we compute the Galois cohomology groups
using (ϕ,Γ)-modules. To do this, we construct two complexes of (ϕ,Γ)-modules whose
cohomologies each coincide with the cohomology of the attached Galois representation.
One of these two complexes is constructed by using the operator ϕ the other one by
using the operator ψ. Finally, we construct a regulator map for an O×

L ×Zp-extension
of L.

Kurzdarstellung

Der Schwerpunkt der vorliegenden Arbeit liegt auf allgemeinen Lubin-Tate (ϕ,Γ)-
Moduln. Bevor wir uns dieser Theorie widmen, behandeln wir einige allgemeine
Aussagen über Monoid- und stetige Gruppenkohomologie sowie über Doppelkomplexe
und Limites von Komplexen.
Nach diesen Vorbereitungen zeigen wir wie im klassischen Fall zunächst, dass die
Kategorie der étalen (ϕ,Γ)-Moduln äquivalent ist zur Kategorie von Galoisdarstel-
lungen der absoluten Galoisgruppe von K mit Koeffizienten in OL, wobei K|L und
L|Qp endliche Erweiterungen sind.
Danach wird mithilfe von (ϕ,Γ)-Moduln Iwasawa Kohomologie einer Darstellung
berechnet und eine Reziprozitätsabbildung definiert. Anschließend wird die Ga-
loiskohomologie einer Darstellung mit (ϕ,Γ)-Moduln berechnet. Hierzu werden zwei
Komplexe von (ϕ,Γ)-Moduln konstruiert, deren Kohomologie dann jeweils der Ga-
loiskohomologie der zugehörigen Darstellung entspricht. Einer dieser beiden Komplexe
wird zu dem Operator ϕ, der andere zu dem Operator ψ gebildet. Den Abschluss der
Arbeit bildet die Konstruktion einer Regulatorabbildung für eine O×

L×Zp-Erweiterung
von L.
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Chapter 1

Introduction

One of the most interesting and most studied objects in algebraic number theory
are absolute Galois groups. Since these groups are far away from being easy to
understand, mathematicians discovered lots of paths to describe them in numerous
ways and to reveal their secrets. An often used tool are the representations of these
groups and the corresponding cohomology groups.

Let p be a prime number and fix an algebraic closure Qp of Qp and let Cp be the
p-adic completion of Qp. Assume that all algebraic extensions of Qp are inside Qp.
Furthermore, L|Qp be a finite extension, OL its ring of integers and πL be a prime
element of OL.
The p-adic Hodge theory, studies representations of (infinite) Galois groups with
values in L or its ring of integers OL. Fontaine then established a new sight on these
p-adic Galois representations as he showed that étale (ϕ,Γ)-modules are equivalent to
p-adic Galois representations (cf. [FO10, Theorem 4.22, p.82]) over Qp (or Zp). One
great benefit of this construction is that (ϕ,Γ)-modules are objects of (semi-)linear
algebra and therefore relatively easy to understand. However, this comes at the cost
of a more complicated coefficient ring. For the construction of this coefficient ring,
Fontaine used the cyclotomic extension of Qp. In a natural way then there arose two
questions: First, if there is a similar construction of (ϕ,Γ)-modules for Lubin-Tate
extensions (since the cyclotomic extension is a special case of Lubin-Tate extensions)
and second, if there is a category of (ϕ,Γ)-modules which is equivalent to Galois
representations over a finite extension of Qp or its integers. In 2009 Kisin and Ren
answered both questions with "yes" (cf. [KR09, Theorem (1.6), p. 446]) and in 2017
Schneider gave a proof in full detail (cf. [Sch17, Theorem 3.3.10, p. 134]). While
Schneider’s proof covers the case of representations of GL (the absolute Galois group
of L) with values in OL, Kisin and Ren stated the result also for subgroups of GL, i.e.
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absolute Galois groups of finite extensions of L. In this work, we generalize Schneider’s
proof to the latter case, i.e. to the case where the considered representations are
the representations of GK , where K|L is finite, with values in OL. Before giving the
exact statement of the theorem, we should say a word about what Γ is and about
the coefficient ring of our (ϕ,Γ)-modules. We start with Γ. We are interested in
certain algebraic extension of L with Galois group isomorphic to O×

L . We fix such
an extension and denote it by L∞. In the classical theory this is Qp(µp∞), i.e. the
extension of all pn-th roots of unity. In the general case, L∞ is the union of the
extensions generated by the roots of the powers of so called Frobenius power series.
These are power series with coefficients in OL such that they are congruent to πLX
modulo degree 2 and congruent to XqL module πLOLJXK, where qL is the cardinality
of OL/(πL). The classical case fits also in this theory since (X − 1)p − 1 fulfills the
above requirements and if α is a root of its n-th power, then α+ 1 is a pn-th root of
unity, i.e. the field extension generated by the roots of its n-th power coincides with
the extension of pn-th roots of unity. Anyway, the Galois group of L∞|L is denoted
by ΓL and the one of Qp|L∞ by HL. Furthermore, we let K|L be a finite extension
and denote let K∞ := KL∞. We then denote by ΓK the Galois group of K∞|K and
by HK the one of Qp|K∞.
For the coefficient ring, let C[p = lim←−x7→xp

OCp/pOCp be the tilt of Cp and denote by
W (C[p)L the ramified Witt vectors with respect to L. Then we start with the ring

AL
∼= lim←−

n∈N
OL/π

n
LOL((X))

which can be realized as a subring of W (C[p)L (cf. [Sch17, p. 94]). Next, we consider
A = (Anr

L )∧, where Anr
L is the maximal unramified extension of AL inside W (C[p)L

and ()∧ denotes the completion with respect to the p-adic topology. Since C[p has
characteristic p, it has a Frobenius homomorphism and since GL acts on Cp it also
acts on C[p. By functoriality, W (C[p)L then also has a Frobenius and an action from
GL. Both carry over to A. Therefore we can define the ring AK|L := AHK which
then also has a Frobenius, denoted by ϕK|L, and an action from ΓK = GK/HK .
We should also say a word about topologies. Both, the endomorphism ϕK|L and
the action from ΓK are continuous with respect to the so called weak topology on
AK|L. This is the subspace topology from W (C[p)L, where C[p carries the topology of
the projective limit and each OCp/pOCp carries the discrete topology. W (C[p)L then
carries product topology. Under the above isomorphism for AL, the weak topology
of AL is generated by the sets (c.f. [Sch17, p. 79] and [Sch17, Proposition 2.1.16,
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p. 95–96])
XnOLJXK + πnLAL.

The weak topology on AK|L has the same structure (cf. Corollary 3.3.4) and it
coincides with the weak topology considered as AL-module (cf. Proposition 3.3.5).
For this theory, we cannot work with the p-adic topology, since, for example, the GL-
action on W (C[p)L is not continuous with respect to the p-adic topology on W (C[p)L
(cf. [Sch09, Bemerkung 3.2.11, p. 106]). In Section 3.3 we study weak topologies on
both, the coefficient ring AK|L and its finitely generated modules in detail.
A (ϕ,Γ)-module over AK|L then is a finitely generated AK|L-module M together
with a semilinear action from ΓK and a ϕK|L-semilinear endomorphism ϕM . M is
called étale if the linearized homomorphism

AK|L ϕK|L⊗AK|LM
//M, a⊗m � // aϕM (m)

is bijective. Here ϕK|L⊗AK|L means that AK|L is considered as AK|L-module via
ϕK|L. The theorem then reads (cf. Theorem 3.9.1):

Theorem A.
The categories Rep

(fg)
OL

(GK) and Modét
ϕ,Γ(AK|L) are equivalent to each other. The

equivalence is given by the quasi invers functors

MK|L : Rep
(fg)
OL

(GK) //Modét
ϕ,Γ(AK|L)

V � // (A⊗OL
V )HK

and
VK|L : Modét

ϕ,Γ(AK|L) // Rep
(fg)
OL

(GK)

M � //
(
A⊗AK|L M

)Fr⊗ϕM=1
.

This is the generalization to finite extensions of Qp and to Lubin-Tate (ϕ,Γ)-
modules of Fontaine’s original equivalence of categories. In the above equivalence one
can see that the change to a subgroup on the side of Galois representations translates
into a change of the coefficient ring, the involved group Γ and the endomorphism ϕ

on the side of (ϕ,Γ)-modules. In Section 3.4 we study the structure of the coefficient
ring for unramified extensions and in Section 3.5 for general extensions.

In the following chapters, we use these general (ϕ,Γ)-modules to calculate Iwasawa
and continuous cohomology for a representation of GK with coefficients in OL,
establish a reciprocity law, which generalizes the corresponding reciprocity law from
Schneider and Venjakob (c.f. [SV15, Theorem 6.2, p. 32]) and construct a regulator



4

map, which interpolates the regulator maps from [SV19, Section 3.1, p. 71–74].
In Chapter 4 we start with taking a closer look at [SV15]. Using the original result
of Coleman (cf. [Col79, Thm. A, p. 92]) allows us to generalize Schneider’s and
Venjakob’s work to the case of a finite and unramified extension K of L. Since K|L
is unramified, it as a Galois extension with cyclic Galois group, generated by the
Frobenius σK|L, which is a lift from the Frobenius of the corresponding residue class
field extension. Thankfully, their original work is very detailed and so our main task
was to study what the input from the Frobenius is. The short version is: The results
do not really change, sometimes there is a shift by the Frobenius, but that’s exactly
what one needs to establish these results in this bigger generality. That the Frobenius
is involved is a consequence of Proposition 3.4.6. There we see that we have

ϕK|L = σK|L ◦ ϕL

on AK|L, ϕK|L is the ϕ-operator of the (ϕ,Γ)-modules over AK|L and ϕL the one of
the (ϕ,Γ)-modules over AL. We then also introduce a ψ operator by

ψK|L =
1

πL
ϕ−1
K|L ◦ Tr,

where Tr is the trace map of the finite extension BK|L|ϕK|L(BK|L). One of the results
in this chapter then is the relation of this ψ-operator to the Iwasawa cohomology of
an OL-representation of GK (cf. Theorem 4.3.13):

Theorem B.
Let V ∈ Rep

(fg)
OL

(GK), τ = χcycχ
−1
LT and ψ = ψMK|L(V (τ−1)). Then we have an exact

sequence

0 // H1
Iw(K∞|K,V ) //MK|L(V (τ−1))

ψ−id //MK|L(V (τ−1)) // H2
Iw(K∞|K,V ) // 0,

which is functorial in V .
Furthermore, each occurring map is continuous and OLJΓKK-equivariant.

Here we have τ = χcycχ
−1
LT, where χcyc denotes the cyclotomic character and

χLT : ΓL
∼=→ O×

L the Lubin-Tate character. The chapter then concludes in the following
reciprocity law (cf. Theorem 4.4.2).
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Theorem C.
The following diagram is commutative:

(lim←−nK
×
n )⊗Zp T

∗ −κ⊗idT∗

∼=
//

∇ ((

H1
Iw(K∞|K,OL(τ))

∼=
Exp∗vv

(AK|L)
ψ=1.

Here, Exp∗ denotes the homomorphism induced from

H1
Iw(K∞|K,OL(τ))→MK|L(OL) = AK|L

from the above Theorem B (respectively from Theorem 4.3.13), T ∗ is the representa-
tion module of χ−1

LT, i.e. T ∗ is isomorphic to OL as OL-module and carries an action
from ΓK by γ · t = χLT(γ)

−1t. One can proof that there is a natural isomorphism
H i

Iw(K∞|K,V ⊗OL
T ∗) ∼= H i

Iw(K∞|K,V )⊗OL
T ∗ (cf. Remark 4.3.10). Together with

V ⊗OL
T ∗ ∼= V (χ−1

LT) and the Kummer isomorphism lim←−nK
×
n
∼= H1

Iw(K∞|K,Zp(1))
this then induces the horizontal homomorphism in the above diagram. Note that
lim←−nK

×
n denotes the norm field of K∞, i.e. the projective limit is build with respect

to the norm maps Kn+1 → Kn. Then lim←−nK
×
n is the multiplicative group of a field

(cf. [Win83, 2.1.3 Théorème, p. 65–66]). In the key lemma (cf. Lemma 4.4.4) of the
above theorem a Frobenius is involved again, which does not appear in the original
work. We then end the section (and the chapter) by explaining at which part of the
proofs this Frobenius comes in and that it has to be there.

In Chapter 5 we study how to compute Galois cohomology using (ϕ,Γ)-modules.
In the classical theory, this is well known and is one of the benefits of (ϕ,Γ)-modules:
If V is a Zp-representation of GK , then the complex

0 //MK|Qp
(V )

(f−1,γ−1)//MK|Qp
(V )⊕MK|Qp

(V )
(γ−1)pr1−(f−1)pr2 //MK|Qp

(V ) // 0

computes the group cohomology of GK with values in V , where f can be both, ϕ or
its left-inverse ψ and where γ is a topological generator of Γ (cf. eg. [Col04, Theorem
5.2.2., p. 93–94] and [Col04, Theorem 5.3.15, p. 103–104]). These complexes are often
called Herr complexes. Moreover, the complexes for ϕ and ψ are quasi-isomorphic
(cf. [Col04, Proposition 5.3.14, p. 103]). While one has the exact same results for
Lubin-Tate (ϕ,Γ)-modules over AQp (cf. [Kup15, Satz 2.20, p. 41–42] respectively
[Kup15, Satz 2.26, p. 48] and [Kup15, Satz 2.27, p. 48]) one could not expect that
this is also true for Lubin-Tate (ϕ,Γ)-modules corresponding to representations over
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a finite extension of Qp, since in this case the ψ-operator is no longer a left inverse
to ϕ (cf. Remark 4.2.3). In summer 2019 Aribam and Kwatra published a partial
result. They showed, that a generalized Herr complex with respect to ϕ computes the
Galois cohomology of a torsion representation with coefficient ring OK , where K|Qp

is finite (cf. [AK19, Theorem 3.16, p. 10–11]). In this thesis we go a step further and
prove that for an arbitrary finitely generated OL-representation V of GK there is a
complex of the corresponding (ϕ,Γ)-module, of which the cohomology is exactly the
continuous group cohomology of GK with coefficients in V . In our proof, we followed
the idea of Scholl in [Sch06, Theorem 2.2.1, p. 702–705], generalized his proof to our
setting and added all the details. By C•

cts(G,A) we denote the continuous cochain
complex of a profinite group G with values in the abelian group A. Furthermore, for
M ∈Modét

ϕ,Γ(AK|L) we denote by C•
ϕK|L

(ΓK ,M) the total complex of the double
complex

C•
cts(ΓK ,M))

C•
cts(ΓK ,ϕM )−id // C•

cts(ΓK ,M)

and by H∗
ϕK|L

(ΓK ,M) its cohomology. The exact statement of the theorem then is
(cf. Theorem 5.1.11):

Theorem D.
Let V ∈ Rep

(fg)
OL

(GK) and set M = MK|L(V ). Then there are isomorphisms

H∗
cts(GK , V )

∼= // H∗
ϕK|L

(ΓK ,M),

H∗
cts(HK , V )

∼= // H∗
ϕK|L

(M).

These isomorphisms are functorial in V and compatible with restriction and corestric-
tion.

The idea of the proof is the following: First, we show that for discrete V the
complexes C•

ϕK|L
(ΓK ,Mn) and C•

cts(GK , V ) are quasi isomorphic to the complex
C•
Fr(GK ,A/ω

n
φA

+ ⊗OL
V/πmL V ). Here, the latter complex is defined in an analogous

way as above and Mn = MK|L(V )/(ωnφA
+ ⊗OL

V )HK . These quasi isomorphisms are
induced by the short exact sequence

0 // V // A⊗OL
V

Fr⊗idV −id // A⊗OL
V // 0

respectively by the canonical inclusion MK|L(V ) ↪→ A ⊗OL
V . In particular, both

quasi isomorphisms have target C•
Fr(GK ,A/ω

n
φA

+ ⊗OL
V/πmL V ). After that, we take

projective limits with respect to m and n and check that everything behaves well.
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In the second part of Chapter 5, we head towards the computation of the Galois
cohomology using the ψ-operator. Since ϕ and ψ are related to each other under
Pontrjagin duality (cf. [SV15, Remark 5.6, p. 27]), it seems to be the correct way,
to dualize the complex of ϕ. In a first attempt we tried to imitate the methods of
Herr (cf. [Her01, Lemme 5.6, p. 333]) to establish a quasi isomorphism between the
complexes of (ϕ,Γ)-modules related to ϕ and ψ using Tate duality. This approach
requires to show that all the differentials of the ϕ-Herr complex have closed image,
which implies that they are strict which then implies that the cohomology groups of
the dualized complex coincide with the dual of the cohomology groups of the complex
we started with. In his original work, Herr checked that the differentials have closed
image for each differential separately (cf. [Her01, p. 334]). Unfortunately, in the
general case we have to deal with direct products of Herr’s differentials and modules
and it is no longer clear, that the differentials have closed image.
Our second attempt then was successful. Here we imitated results of Nekovář (cf.
[Nek07, Sections (8.2) and (8.3), p. 157–160]) to replace the complex C•

cts(HK , A)

with a complex C•
cts(GK , FΓK

(A)) of ΛK = OLJΓKK-modules, where A = V ∨ is the
dual of some GK-representation. Here "replace" means, that the two complexes
are quasi isomorphic (cf. Proposition 5.2.21). This then has the advantage that we
can apply the Mattlis dual DK = HomΛK

(−,Λ∨
K) to this complex. Nekovář proved

that this dualized complex is quasi isomorphic to a complex computing the Iwasawa
cohomology (cf. Lemma 5.2.44). We then finally check, that the complex related to
ψ is quasi isomorphic to this dualized complex. To do this, we use Theorem 4.3.13
and therefore we have to assume that K|L is unramified. Using again a result of
Nekovář , we then get the following statement (cf. Theorem 5.2.52).

Theorem E.
Let T ∈ Rep

(fg)
OL

(GK) and let K ⊆ K ′ ⊆ K∞ an intermediate field, finite over K, such
that ΓK′ := Gal(K∞|K ′) is isomorphic to some Zrp. Then we have an isomorphism
in D+(OL-Mod)

RΓ(C•
ψ(MK|L(T (τ

−1))
L
⊗ΛK′ OL

∼= RΓ•
cts(GK′ , T ).

Here we use the following notation. If C• is a bounded below complex of abelian
groups (or of R-modules for a suitable ring R), then we denote by RΓ(C•) the
same complex viewed as object in the derived category Db(Ab) (respectively in
Db(R-Mod)). Furthermore, by manipulating the representation on the right hand
side we can replace the above complex of cochains of GK′ by a complex of cochains
of GK (cf. Corollary 5.2.54). To be more precise, Shapiro’s Lemma induces an
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isomorphism in D+(OL-Mod)

RΓ•
cts(GK′ , T ) ∼= RΓ•

cts(GK , T ⊗OL
OL[GK/GK′ ]),

where GK acts diagonal on T ⊗OL
OL[GK/GK′ ].

In Chapter 6, which is the last chapter of this thesis, we generalize the regulator map
of Loeffler and Zerbes of [LZ14a] to the case of a general Lubin-Tate extension. For
this, let F |L be a finite, unramified extension, F∞ the unique unramified Zp-extension
of F and Υ = Gal(F∞|F ). We then fix some additional notation, introduce more
of Fontaine’s period rings and introduce crystalline and analytic representations as
well as explain the notion of Qp- and L-analytic functions and their continuous duals,
the distributions. We denote the Qp-analytic distributions of Υ with values in Cp by
DQp(Υ,Cp) and the L-analytic distributions of ΓL with vales in Cp by DL(ΓL,Cp).
Afterwards, we recall a result from [Pic18] about the existence of an integral normal
basis generator (i.e. an integral element whose powers are a normal basis), which
says, that for finite and unramified Galois extensions over L such an integral normal
basis generator always exists. Unfortunately we have to assume p 6= 2 for this. Then
we introduce the Yager module, which turns out to be a free rank 1-module over
the Iwasawa algebra of Υ over OF and subsequently we introduce Wach modules
and show that a Wach module over OF∞ is linked to the Wach module over OF and
the Yager module. Then we are almost prepared to introduce the Regulator map
but we still have to face one detail, which is not known to be true in the general
Lubin-Tate setting. This is, if there exists an AL-basis (u1, . . . , un) of ϕL(AL) such
that ψL(ui) = δ1i. But an analogous result is known for the Robba ring and its plus
part. This together with results from [SV19] then allows us to introduce a regulator
map similar to the one of Loeffler and Zerbes. Roughly (the full statement involves
to many details for an introduction - for the full statement see Theorem 6.6.7) the
theorem then is.

Theorem F.
Let T ∈ Repcris,an

OL
(GL) and V = T [1/πL] with nonnegative Hodge-Tate weights and

such that T has no quotient isomorphic to the trivial representation. Then we have a
regulator map

L
ΓL,Υ
V : H1

Iw(F∞L∞|L, T ) // DL(ΓL,Cp)⊗̂OF
DQp(Υ,Cp)⊗L Dcris,L(V (τ−1)).

This map interpolates the corresponding regulator maps for all finite intermediate
fields of F∞|F .



Chapter 2

Preliminaries

By N we denote the natural numbers starting with 1 and we let N0 = N ∪ {0}. For a
homomorphism f : A→ B we denote by ker(f) its kernel, by im(f) its image and by
coker(f) its cokernel.

2.1 On Continuous Group Cohomology

First, we want to recall some basic facts from topology.
For topological spaces X,Y we endow the set of continuous maps Mapcts(X,Y ) always
with the compact open topology (cf. [Bou89b, Definition 1, Chapter X §3.4, p. 301]).
Note, that in this topology Mapcts(X,Y ) is a Hausdorff space if Y is (cf. [Bou89b,
Remarks (1), Chapter X §3.4, p. 301–302]). For K ⊆ X compact and U ⊆ Y open
denote by M(K,U) the set of all f ∈ Mapcts(X,Y ) with f(K) ⊆ U .

Theorem 2.1.1.
Let X,Y, Z be topological spaces and f : X × Y → Z a map. If f is continuous, then
also the map f̃ : X → Mapcts(Y, Z) is continuous, where (f̃(x))(y) = f(x, y).
If f̃ is continuous and Y is locally compact, then also f is continuous.

Proof.
This is [Bou89b, Theorem 3, Chapter X §3.4, p. 302–303]).

Corollary 2.1.2.
Let X and Y be topological spaces and X locally compact. Then the evaluation map
ev : X ×Mapcts(X,Y )→ Y, (x, f) 7→ f(x) is continuous.

Proof.
Since X is locally compact Theorem 2.1.1 says that the continuity of ev is equivalent
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to the continuity of

ẽv : Mapcts(X,Y )→ Mapcts(X,Y ), (ẽv(f))(x) = ev(x, f) = f(x).

But ẽv is the identity of Mapcts(X,Y ) and therefore continuous.

Proposition 2.1.3.
Let X,Y, Z be topological spaces, X Hausdorff and Y locally compact. Then there is
a homeomorphism

Mapcts(X × Y, Z)→ Mapcts(X,Mapcts(Y, Z))

which is given by the restriction of the canonical bijection
Map(X × Y, Z)→ Map(X,Map(Y, Z)).

Proof.
This is [Bou89b, Corollary 2 to Theorem 3, Chapter X §3.4, p. 303–304].

Definition 2.1.4.
Let M be a monoid and A an abelian group. We say that M acts on A if there is a
map

· : M ×A // A

which fulfills the following conditions:

1. 1M · a = a for all a ∈ A.

2. m · (a+ b) = m · a+m · b for all m ∈M and a, b ∈ A.

3. (mn) · a = m · (n · a) for all m,n ∈M and a ∈ A.

If M is a topological monoid and A is a topological Hausdorff abelian group, then we
say that an action is continuous if the above map "·" is continuous.

Proposition 2.1.5.
Let G,H,A be topological groups such that H is locally compact and A is abelian and
Hausdorff. Let furthermore G act continuously on both H and A. Then G also acts
continuously on Mapcts(H,A), where for σ ∈ G and f ∈ Mapcts(H,A) the action is
given by (σ · f)(h) = σ(f(σ−1(h))).

Proof.
First we should check that the action is well defined, i.e. we show that for σ ∈ G and
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f ∈ Mapcts(H,A) we have σ ·f ∈ Mapcts(H,A). So, let σ ∈ G and f ∈ Mapcts(H,A).
Then the map σ · f can be written as composite of the following maps:

H // H // A // A

h � // σ−1(h)

h � // f(h)

a � // σ(a).

The first of these maps is continuous since inversion in G is continuous and G acts
continuously on H. The second one is f and therefore continuous. The last one is
continuous since G acts continuously on A. So, in conclusion σ · f is a continuous
map from H to A.
For the continuity of the group action, we have to show that the map

G×Mapcts(H,A) //Mapcts(H,A), (σ, f)
� // σ · f

is continuous. Since H is assumed to be locally compact this is equivalent to the
continuity of the map

G×H ×Mapcts(H,A) // A, (σ, h, f) � // σ(f(σ−1(h)))

(cf. Theorem 2.1.1). This last map can be written as the composite of the following
maps:

G×H ×Mapcts(H,A) // G×H ×Mapcts(H,A) // G×A // A

(σ, h, f) � // (σ, σ−1(h), f)

(σ, h, f) � // (σ, f(h))

(σ, a) � // σ(a).

The first of these maps is continuous since G is a topological group (therefore inversion
is continuous) and G acts continuously on H. The second map is continuous since
evaluating functions with a locally compact domain are continuous (cf. Corollary
2.1.2). The last map is continuous since G acts continuously on A.

Definition 2.1.6.
Let G be a profinite group and A an abelian topological group on which G acts
continuously. We say that A is G-induced if there exists an abelian topological
group B together with a continuous action of G, such that A = Mapcts(G,B).
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Lemma 2.1.7.
Let G be a profinite group and A an abelian topological group on which G acts
continuously. Then the complex

0 // A //Mapcts(G,A) //Mapcts(G
2, A) //Mapcts(G

3, A) // · · ·

is exact.

Proof.
At [NSW15, (1.2.1) Proposition, Chapter I §2, p. 12–13] is a proof for discrete group
cohomology. For continuous cohomology it’s literally the same, but one should check
(in both cases) that the maps

Dn : Mapcts(G
n+2, A) //Mapcts(G

n+1, A),

x � // [(σ0, . . . , σn) 7→ x(1, σ0, . . . , σn)]

are well defined, namely that Dn(x) for x ∈ Mapcts(G
n+2, A) is continuous. For

this, let U ⊆ A be open and x ∈ Mapcts(G
n+2, A). Then x−1(U) ⊆ Gn+2 is open

and so is x−1(U) ∩ {1} × Gn+1 in {1} × Gn+1. Since the canonical projection
η : {1} × Gn+1 → Gn+1 is open, the set η(x−1(U) ∩ {1} × Gn+1) is open in Gn+1.
The claim is, that this is exactly (Dnx)−1(U), which then proves the continuity of
Dnx.
To see this, let (σ0, . . . , σn) ∈ (Dnx)−1(U). Since Dnx(σ0, . . . , σn) = x(1, σ0, . . . , σn)

it follows (1, σ0, . . . , σn) ∈ x−1(U) and we have η(1, σ0, . . . , σn) = (σ0, . . . , σn), which
means that (σ0, . . . , σn) ∈ η(x−1(U) ∩ {1} ×Gn+1).
Conversely let (σ0, . . . , σn) ∈ η(x−1(U) ∩ {1} × Gn+1). Then we clearly have
(1, σ0, . . . , σn) ∈ x−1(U). Since x(1, σ0, . . . , σn) = Dnx(σ1, . . . , σn) we immediately
obtain (σ0, . . . , σn) ∈ (Dnx)−1(U).

Remark 2.1.8.
We want to recall the continuous standard resolution from [NSW15, Chapter II, §7,
p. 136-137] and fix the notation.
Let G be a profinite group and A a topological Hausdorff abelian group with a contin-
uous action from G. Let for n ∈ N0

Xn
cts(G,A) := Mapcts(G

n+1, A)
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and ∂ncts : X
n−1
cts → Xn

cts be the differential , which is given by

∂ncts(x)(σ0, . . . , σn) =

n∑
i=0

(−1)ix(σ0, . . . , σ̂i, . . . , σn),

where " ̂ " means that the corresponding element is omitted. Furthermore, we denote
by X•

cts(G,A) the corresponding complex, i.e.

X•
cts(G,A) = · · ·

∂n−1
cts // Xn−1

cts (G,A)
∂ncts // Xn

cts(G,A)
∂n+1
cts // · · · .

As usual, we then set
Cncts(G,A) := Xn

cts(G,A)
G.

One checks that ∂ncts restricts to a homomorphism Cn−1
cts (G,A) → Cncts(G,A). We

then let C•
cts(G,A) be the complex

C•
cts(G,A) = · · ·

∂n−1
cts // Cn−1

cts (G,A)
∂ncts // Cncts(G,A)

∂n+1
cts // · · · .

This complex is called the continuous standard resolution of G with coefficients in
A. We denote its n-th cohomology group by Hn

cts(G,A) and call it the n-th continuous
cohomology group of G with coefficients in A.

Proposition 2.1.9.
Let G be a profinite group and A be an abelian topological group on which G acts
continuously. Then Hn

cts(G,Mapcts(G,A)) = 0 for all n > 0.

Proof.
The proof for the discrete case is at [NSW15, (1.3.7) Proposition, p. 32]. By proving
that the involved maps are well defined, this proof transforms to our situation. In
particular, we will show that the maps

Mapcts(G
n+1,Mapcts(G,A))

G oo //Mapcts(G
n+1, A)

x � α // [(σ0, . . . , σn) 7→ x(σ0, . . . , σn)(1)]

[(σ0, . . . , σn) 7→ [σ 7→ σ(y(σ−1σ0 . . . σ
−1σn))]] y�

β
oo

are well defined and inverse to each other. For this, we will write αx := α(x) and
βy := β(y).
For the well definedness we have to show that the maps αx, βy and βy(σ0, . . . , σn)

are continuous for all x ∈ Mapcts(G
n+1,Mapcts(G,A)), y ∈ Mapcts(G

n+1, A) and
(σ0 . . . , σn) ∈ Gn+1 as well as βy is fixed by the operation of G.
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So, let x ∈ Mapcts(G
n+1,Mapcts(G,A)), U ⊆ A open and (σ0, . . . , σn) ∈ Gn+1

such that x(σ0, . . . , σn)(1) ∈ U , i.e. (σ0, . . . , σn) ∈ α−1
x (U). We then clearly have

x(σ0, . . . , σn) ∈ M({1}, U). Since x is continuous, there exists an open V ⊆ Gn+1 with
(σ0, . . . , σn) ∈ V such that V ⊆ x−1(M({1}, U)). But then we also have V ⊆ α−1

x (U),
which prooves the continuity of αx.
Now let y ∈ Mapcts(G

n+1, A). Theorem 2.1.1 says that βy is continuous if the map

G×Gn+1 // A, (σ, (σ0, . . . , σn))
� // σ(y(σ−1σ0, . . . , σ

−1σn))

is continuous. This map can be written as the composite of the following maps

G×Gn+1 // G×Gn+1 // G×A // A

(σ, τ) � // (σ, σ−1 · τ)
(σ, τ) � // (σ, y(τ))

(σ, a) � // σ(a).

The first of these maps is continuous because inversion in G is continuous and
multiplication in G is continuous, therefore the componentwise action of G on Gn+1

by multiplication is also continuous. The second map is continuous since y is and the
last map is continuous since G acts continuously on A. In conclusion βy is continuous.
Next we show that βy is fixed under the operation from G. Let for this η, σ ∈ G and
τ ∈ Gn+1. Then we have:

((η · βy)(τ))(σ) =
(
η · (βy(η−1τ))

)
(σ)

= η(βy(η
−1τ)(η−1σ))

= η((η−1σ)y(σ−1ηη−1τ))

= σ(y(σ−1τ))

= (βy(τ))(σ),

i.e. βy is fixed under the operation of G.
Let now additionally τ := (σ0, . . . , σn) ∈ Gn+1 and U ⊆ A be open. Let σ ∈ G such
that βy(τ)(σ) = σ(y(σ−1 ·τ)) ∈ U . First note that βy(τ)(σ) = (σ ·y)(τ) and that σ ·y
again is continuous (cf. proof of Proposition 2.1.5). Then, since σ ·y is continuous and
Gn+1 is compact (since G is a profinite group) and therefore also locally compact, it
exists a compact neighboruhood K ⊆ Gn+1 of τ such that (σ ·y)(K) ⊆ U (cf. [Bou89a,
Corollary to Proposition 9, Chapter I §9.7, p. 90]), i.e. σ · y ∈ M(K,U). Since G acts
continuously on Mapcts(G

n+1, A) (cf. Proposition 2.1.5) then exist open sets V ⊆ G
and W ⊆ Mapcts(G

n+1, A) such that σ ∈ V , y ∈W and V ×W ⊆ Mapcts(G
n+1, A).
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Especially we have η · y ∈ M(K,U) for all η ∈ V and since τ ∈ K we then get
βy(τ)(η) = (η · y)(τ) ∈ U for all η ∈ V , i.e. V is an open neighbourhood of σ
contained in βy(τ)−1(U), so βy(τ) is continuous.
The rest of the proof now follows [NSW15, (1.3.7) Proposition, p. 32], but here we
use continuous cohomology. We actually proved that for every n > 0 we have an
isomorphism of groups

Mapcts(G
n,Mapcts(G,A))

G ∼= Xcts(G
n, A).

We want this to be an isomorphism of complexes, so we have to check that it commutes
with the corresponding differentials. Thus, we have to check that for all n > 0 the
following diagrams commute:

Mapcts(G
n,Mapcts(G,A))

G α //

∂ncts
��

Mapcts(G
n, A)

∂ncts
��

Mapcts(G
n+1,Mapcts(G,A))

G α //Mapcts(G
n+1, A)

and
Mapcts(G

n, A)
β //

∂ncts
��

Mapcts(G
n,Mapcts(G,A))

G

∂ncts
��

Mapcts(G
n+1, A)

β //Mapcts(G
n+1,Mapcts(G,A))

G.

So, let x ∈ Mapcts(G
n,Mapcts(G,A))

G. Then it is

(α ◦ ∂ncts)(x)(σ0, . . . , σn) =
n∑
i=0

(x(σ0, . . . , σ̂i, . . . , σn))(1).

On the other hand, we have

α(x)(σ0, . . . , σn−1) = x(σ0, . . . , σn−1)(1)

and therefore

(∂ncts◦α)(x)(σ0, . . . , σn) =
n∑
i=0

α(x)(σ0, . . . , σ̂i, . . . , σn) =
n∑
i=0

x(σ0, . . . , σ̂i, . . . , σn)(1),

i.e. the first diagram commutes. For the second diagram let y ∈ Mapcts(G
n, A). Then
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we have

(∂ncts ◦ β)(y)(σ0, . . . , σn)(σ) =
n∑
i=0

β(y)(σ0, . . . , σ̂i, . . . , σn)(σ)

=
n∑
i=0

σ(y(σ−1σ0, . . . , σ̂−1σi, . . . , σ
−1σn)).

On the other hand we have

((β ◦ ∂ncts)(y)(σ0, . . . , σn)) (σ) = σ(δn(y)(σ−1σ0, . . . , σ
−1σn))

= σ

(
n∑
i=0

y(σ−1σ0, . . . , σ̂−1σi, . . . , σ
−1σn)

)
,

i.e. the second diagram commutes. Thus, we have an isomorphism of complexes

C•
cts(G,Mapcts(G,A))

∼= X•
cts(G,A).

The complex X•
cts(G,A) is exact (cf. Lemma 2.1.7) and therefore we have

Hn
cts(G,Mapcts(G,A)) = Hn(C•

cts(G,Mapcts(G,A)))
∼= Hn(X•

cts(G,A)) = 0.

Lemma 2.1.10.
Let G be a profinite group and A a G-module. Then for all n > 0 the G-module
Mapcts(G

n, A) is G-induced.

Proof.
Since G is Hausdorff and compact Proposition 2.1.3 says that the canonical maps

Mapcts(G
n, A)

∼= //Mapcts(G,Mapcts(G
n−1, A)),

f � α // [σ 7→ [(σ1, . . . , σn−1) 7→ f(σ, σ1, . . . , σn−1)]]

[(σ1, . . . , σn) 7→ f(σ1)(σ2, . . . , σn)] f�
β

oo

are homeomorphisms. These maps are also compatible with the group structure on
both sides. To see this for α let f, g ∈ Mapcts(G

n, A) and σ, σ1, . . . , σn−1 ∈ G and
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compute:

(α(f + g)(σ))(σ1, . . . , σn−1) = (f + g)(σ, σ1, . . . , σn−1)

= f(σ, σ1, . . . , σn−1) + g(σ, σ1, . . . , σn−1)

= (α(f(σ)) + α(g(σ)))(σ1, . . . , σn−1)

= ((α(f) + α(g))(σ))(σ1, . . . , σn−1).

For β let f, g ∈ Mapcts(G,Mapcts(G
n−1, A)) and σ1, . . . , σn ∈ G and compute:

β(f + g)(σ1, . . . , σn) = (f + g)(σ1)(σ2, . . . , σn)

= (f(σ1) + g(σ1))(σ2, . . . , σn)

= f(σ1)(σ2, . . . , σn) + g(σ1)(σ2, . . . , σn)

= β(f)(σ1, . . . , σn) + β(g)(σ1, . . . , σn)

= (β(f) + β(g))(σ1, . . . , σn).

Last we have to see that these maps are compatible with the operation of G. Let
τ, σ, σ1, . . . , σn ∈ G and f ∈ Mapcts(G

n, A). Then we compute

((α(τ · f))(σ))(σ1, . . . , σn−1) = (τ · f)(σ, σ1, . . . , σn−1)

= τ(f(τ−1σ, τ−1σ1, . . . , τ
−1σn−1))

= τ((α(f)(τ−1σ))(τ−1σ1, . . . , τ
−1σn−1))

= (τ · α(f)(τ−1σ))(σ1, . . . , σn−1)

= ((τ · α(f))(σ))(σ1, . . . , σn−1),

i.e. it is α(τ · f) = τ · α(f). Let now f ∈ Mapcts(G,Mapcts(G
n−1, A)) and compute

β(τ · f)(σ1, . . . , σn) = (τ · f)(σ1)(σ2, . . . , σn)

= ((τ · f)(τ−1σ1))(σ2, . . . , σn)

= τ(f(τ−1σ1)(τ
−1σ2, . . . , τ

−1σn))

= τ(β(f)(τ−1σ1, . . . , τ
−1σn))

= (τ · β(f))(σ1, . . . , σn),

i.e. it is β(τ · f) = τ · β(f). In conclusion we have shown that Mapcts(G
n, A) and

Mapcts(G,Mapcts(G
n−1, A)) are isomorphic as topological G-modules and therefore

Mapcts(G
n, A) is G-induced.
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Lemma 2.1.11.
Let G be a profinite group and A a G-module. Then for all n > 0 we have an
isomorphism

Mapcts(G
n+1, A)G //Mapcts(G

n, A)

x � // [(σ1, . . . , σn) 7→ x(
∏j
i=1 σi)

n
j=0]

[(σ0, . . . , σn) 7→ σ0y(σ
−1
i−1σi)

n
i=1] y�oo

of abelian groups.

Proof.
For discrete coefficients, this is stated at [NSW15, p. 14]. Since there is no proper
reference, we check that the homomorphisms are inverse to each other. That they
are well defined is obvious. Denote for this proof the upper homomorphism by f , the
image of x ∈ Mapcts(G

n+1, A)G by fx, the lower homomorphism by g and the image
of y ∈ Mapcts(G

n, A) by gy. Let furthermore σ0, . . . , σn ∈ G. We then compute

gfx(σ0, . . . , σn) = σ0fx(σ
−1
0 σ1, . . . , σ

−1
n−1σn)

= σ0x(1, σ
−1
0 σ1, σ

−1
0 σ2, . . . , σ

−1
0 σn)

= x(σ0, . . . , σn)

where the last equation is true since x is fixed under the operation of G. For the
other direction we compute

fgy(σ1, . . . , σn) = gy(1, σ1, σ1σ2, . . . , σ1 · · ·σn)

= y(σ1, . . . , σn).

So f and g are inverse to each other.

Corollary 2.1.12.
Let G be a profinite group and let

0 // A
α // B

β // C // 0

be an exact sequence of topological G-modules such that the topology of A is induced
by that of B and that B → C has a continuous set theoretical section s : C → B.
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Then for all n > 0 the diagrams

0 //Mapcts(G
n−1, A) //

��

Mapcts(G
n−1, B) //

��

Mapcts(G
n−1, C) //

��

0

0 //Mapcts(G
n, A) //Mapcts(G

n, B) //Mapcts(G
n, C) // 0

and

0 //Mapcts(G
n, A)G //

��

Mapcts(G
n, B)G //

��

Mapcts(G
n, C)G //

��

0

0 //Mapcts(G
n+1, A)G //Mapcts(G

n+1, B)G //Mapcts(G
n+1, C)G // 0

are commutative with exact rows and the latter diagram induces a long exact sequence
of continuous cohomology

0 // AG // BG // CG // H1
cts(G,A) // · · ·

· · · // Hn
cts(G,A) // Hn

cts(G,B) // Hn
cts(G,C) // Hn+1

cts (G,A) // · · ·

Furthermore, the topology of Mapcts(G
n, A) is induced by the topology of Mapcts(G

n, B)

and the section s : C → B induces a continuous, set theoretical section
s∗ : Mapcts(G

n, C)→ Mapcts(G
n, B).

Proof.
First we want to see that the topology of Mapcts(G

n, A) is induced from the topology
of Mapcts(G

n, B). Let K ⊆ Gn be compact and U ⊆ A be open. Then there exists
V ⊆ B open such that U = V ∩A. Then we have

M(K,U) =M(K,V ∩A) =M(K,V ) ∩M(K,A) =M(K,V ) ∩Mapcts(G
n, A).

Since Mapcts(G
n,−) turns continuous maps into continuous maps, the map

s∗ : Mapcts(G
n, C)→ Mapcts(G

n, B) induced from the continuous section s : C → B

again is continuous (with the same argument are α∗ and β∗ seen to be continuous).
s∗ is a section as well, because for f ∈ Mapcts(G

n, C) we get

(β∗ ◦ s∗)(f) = β∗(s∗(f)) = β ◦ s ◦ f = f.

The commutativity of both diagrams is obvious, so it remains to check that they have
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exact lines. First, we want to show that the sequence

0 //Mapcts(G
n, A) //Mapcts(G

n, B) //Mapcts(G
n, C) // 0

is exact for all n ≥ 0. For this, we obtain that α∗(f) = α∗(g) for f, g ∈ Mapcts(G
n, A)

if and only if α ◦ f = α ◦ g, which is equivalent to f = g since α is injective.
Furthermore, for f ∈ Mapcts(G

n, A) we have

(β∗ ◦ α∗)(f) = β ◦ α ◦ f = 0,

since β ◦ α = 0, i.e. it is im(α∗) ⊆ ker(β∗). For the opposite inclusion let f ∈ ker(β∗).
Then it is β(f(x)) = 0 for all x ∈ Gn, i.e. it is f(x) ∈ im(α) for all x ∈ Gn. We then
define a map g : Gn → A by g(x) := α−1(f(x)). This is well defined and continuous
since α is a homeomorphism from A to imα because we assumed that the topology
of A is induced by that of B. Last we have to see that β∗ is surjective. But for
f ∈ Mapcts(G

n, C) we may set g := s∗(f) = s ◦ f which then is a continuous map
from Gn to B with β∗(g) = β ◦ g = β ◦ s ◦ f = f .
The exactness for the sequence

0 //Mapcts(G
n, A)G //Mapcts(G

n, B)G //Mapcts(G
n, C)G // 0

for n ≥ 0 then follows with Lemma 2.1.11 and the exactness of

0 //Mapcts(G
n−1, A) //Mapcts(G

n−1, B) //Mapcts(G
n−1, C) // 0.

As in [NSW15, Chapter I, §3, (1.3.2) Theorem, p. 27] the long exact sequence of
cohomology then is an application of the snake lemma, here in its topological version
(cf. [Sch99, Proposition 4, p. 133-134]).

2.2 Monoid Cohomology

As described in the introduction, the aim of Chapter 4 is to compute Galois cohomology
using the theory of Lubin-Tate (ϕ,Γ)-modules. For this, we also compute the
cohomology of complexes like A f−1−→ A, where A is a topological abelian group and f
is a continuous endomorphism of A.
This can be embedded in the theory of monoid cohomology, which then allows us,
in the case of discrete coefficients, to write this cohomological functor as derived
functor. We then combine this with a usual group action, which commutes with the
endomorphism and obtain spectral sequences on cohomology.
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Proposition 2.2.1.
Let A be a topological abelian group and f ∈ End(A) continuous. Then

· : N0 ×A // A, (n, a) � // fn(a)

defines a continuous N0-action on A.

Proof.
The properties 1.-3. of Definition 2.1.4 are immediately clear. For the continuity
let U ⊆ A be open and (n, a) ∈ N0 ×A such that fn(a) ∈ U . Since f is continuous,
fn is continuous as well and therefore (fn)−1(U) ⊆ A is an open set. But then
{n} × (fn)−1(U) ⊆ N0 × A is an open neighbourhood of (n, a) contained in the
preimage of U under ·.

Proposition 2.2.2.
Let M be a topological monoid and A be a discrete abelian group with a continuous
action of M . Then we have

AM ∼= HomZ[M ](Z, A),

as Z[M ]-modules, where Z is considered as trivial Z[M ]-module.

Proof.
We consider the following maps

AM oo // HomZ[M ](Z, A)
a � α // [x 7→ x · a]

f(1) f.�
β

oo

These maps are clearly homomorphisms and they are continuous and open, since
both, Z and A, are discrete.

1. α is well defined:
Let a ∈ AM and m ∈M . With a it also is x · a ∈ AM and therefore we have

m · α(a)(x) = m · (x · a) = x · a = α(a)(x) = α(a)(m · x),

i.e. α(a) is Z[M ]-linear.

2. β is well defined:
Let f ∈ HomZ[M ](Z, A) and m ∈M . Since f is Z[M ]-linear and Z is a trivial
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M -module, we then get

m · f(1) = f(m · 1) = f(1),

i.e. f(1) ∈ AM .

3. α ◦ β = idHomZ[M ](Z,A):
Let f ∈ HomZ[M ](Z, A). For x ∈ Z we then obtain:

α(β(f))(x) = x · β(f) = x · f(1) = f(x),

where the last equality is true, since f is Z-linear. This immediately gives
(α ◦ β)(f) = f , i.e. α ◦ β = idHomZ[M ](Z,A).

4. β ◦ α = idAM :
Let a ∈ AM . Then we get:

β(α(a)) = α(a)(1) = 1 · a = a,

i.e. β ◦ α = idAM .

We are mostly interested in the case of a discrete G-module A, where G is a
profinite group, together with an N0-action (which then automatically is continuous
since both, N0 and A are discrete), which comes from a G-homomorphism of A. To
shorten notation, we make the following definitions.

Definition 2.2.3.
Let G be a profinite group and M a topological monoid.
By DISM we denote the category whose objects are discrete abelian groups with a
continuous action of M and whose morphisms are the continuous group homomor-
phisms which respect the operation of M .
Similarly we denote by DISG the category whose objects are discrete abelian groups
with a continuous action of G and whose morphisms are the continuous group homo-
morphisms which respect the operation of G.
And finally we denote by DISG,M the category whose objects are discrete abelian
groups, together with commuting continuous actions of G and M and whose mor-
phisms are the continuous group homomorphisms which respect the operations from
G and M .
The corresponding categories, whose objects are abstract abelian groups, are denoted
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by ABSM , ABSG and ABSGM .
Furthermore, by TOPG we denote the category of topological abelian Hausdorff groups
with a continuous action from G. The morphisms of this category are the continuous
group homomorphisms which respect the action from G.
Analogously we denote by TOPG,M the category of topological abelian Hausdorff
groups with continuous actions from both, G and M , such that these actions commute.
The morphisms of this category are the continuous group homomorphisms which
respect the actions from G and M .

Remark 2.2.4.
Let G be a profinite group and M a topological monoid. Then the categories DISG,M

and DISG×M coincide, where G×M is considered as a topological monoid.

Proof.
If A ∈ DISG×M then by g · a := (g, 1) · a respectively m · a := (1,m) · a for all g ∈ G,
m ∈ M and a ∈ A we can define operations from G and M on A which then are
automatically continuous, since the action from G×M on A is continuous. Because
of (g,m) = (g, 1)(1,m) = (1,m)(g, 1) for all g ∈ G and m ∈ M , it is immediately
clear that these actions commute. Therefore it is A ∈ DISG,M.
If A ∈ DISG,M, then one can define an action of G×M on A by (g,m) ·a := g · (m ·a).
Since the actions of G and M commute, this is a well defined G×M -action on A. It
is continuous, because it can be factored as the composite of the following maps

(G×M)×A // G×A // A

(g,m, a) � // (g,m · a)
(g, a) � // g · a.

Since both of the above maps are continuous, so is their composite, which is the
action from G×M .
That the morphisms coincide is obvious from the definitions of the actions.

Our aim now is to see that the category DISG,M has enough injective objects. For
this, we follow the idea of [NSW15, (2.6.5) Lemma, Chapter I §6, p. 131] and outline
some details.

Proposition 2.2.5.
Let G be a group and M a monoid.
Then the category ABSG,M coincides with the category of Z[G][M ]-modules.

Proof.
The only question which maybe is not immediately clear, is: If we have a Z[G][M ]-
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module A, why do the operations from G and M commute. But this comes directly
from the definition of Z[G][M ]. There we havs g ·m = m · g for all g ∈ G and m ∈M .
Therefore we have

g · (m · a) = (g ·m) · a = (m · g) · a = m · (g · a)

for all g ∈ G, m ∈M and a ∈ A.

Corollary 2.2.6.
The category ABSG,M has enough injectives.

Proof.
Since the category of R-modules for an arbitrary ring R has enough injectives, this is
an immediate consequence from Proposition 2.2.5.

Lemma 2.2.7.
Let G be a profinite group, M a discrete monoid and A ∈ ABSG,M. Define

Aδ :=
⋃

U≤G open

AU .

Then Aδ ∈ DISG,M.

Proof.
We endow Aδ with the discrete topology and deduce from [NSW15, (1.1.8) Proposition,
Chapter I §1, p. 7–8] that Aδ ∈ DISG. Now let a ∈ Aδ and m ∈ M . Then there
exists U ≤ G open, such that a ∈ AU . Since, by definition, the actions of M and G
commute, we obtain for all u ∈ U

u · (m · a) = (u ·m) · a = (m · u) · a = m · (u · a) = m · a,

i.e. m · a ∈ AU and therefore M also acts in Aδ. Since both, M and Aδ carry the
discrete topology, this action trivially is continuous and since the actions of G and
M commute on A, their restrictions on Aδ do so as well. This means that we have
Aδ ∈ DISG,M as claimed.
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Corollary 2.2.8.
Let G be a profinite group, M a discrete monoid and A ∈ ABSG,M. Then

AG = (Aδ)G.

Proof.
Clear, since Aδ ⊆ A and AG ⊆ Aδ.

Lemma 2.2.9.
Let G be a profinite group, A ∈ DISG and B ∈ ABSG. Let furthermore f : A → B

be a group homomorphism which respects the actions of G. Then im(f) ⊆ Bδ, i.e.
f : A→ Bδ is a morphism in DISG.

Proof.
Let y ∈ im(f) and x ∈ A such that f(x) = y. Since A ∈ DISG it is A = Aδ (cf.
[NSW15, (1.1.8) Proposition, Chapter I §1, p. 7–8]) and therefore it exists U ≤ G

open such that x ∈ AU . For all u ∈ U we then deduce

u · y = u · f(x) = f(u · x) = f(x) = y,

i.e. y ∈ BU ⊆ Bδ.

Corollary 2.2.10.
Let G be a profinite group, M a discrete monoid, A ∈ DISG,M and B ∈ ABSG,M. If
f : A→ B is a group homomorphism which respects the actions from G and M then
im(f) ⊆ Bδ and f : A→ Bδ is a morphism in DISG,M.

Proof.
The first part is an immediate consequence of Lemma 2.2.9, the second is direct
from the assumption: If f : A → B respects the operations from G and M then
f : A → im(f) does so as well and with im(f) ⊆ Bδ as well as Bδ ∈ DISG,M (cf.
Lemma 2.2.7) the claim follows.

Lemma 2.2.11.
Let G be a profinite group, M a discrete monoid and I ∈ ABSG,M an injective object.
Then Iδ ∈ DISG,M also is an injective object.

Proof.
Let A,B ∈ DISG,M, f : A→ B injective and u : A→ Iδ and consider the following
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diagram

0 // A
f //

u
��

B

Iδ

��
I.

Since A and B are also objects in ABSG,M and I is injective, there exists a morphism
v : B → I in ABSG,M such that the following diagram commutes

0 // A
f //

u
��

B

v

��

Iδ

��
I.

From Corollary 2.2.10 we deduce that im(v) ⊆ Iδ and that v : B → Iδ is a morphism
in DISG,M. This morphism still fulfils u = v ◦ f , which then means that Iδ ∈ DISG,M

is an injective object.

Proposition 2.2.12.
Let G be a profinite group and M a discrete monoid. Then the category DISG,M has
enough injective objects.

Proof.
Let A ∈ DISG,M. Since also A ∈ ABSG,M and ABSG,M has enough injective objects
(cf. Corollary 2.2.6) we can find an injective object I ∈ ABSG,M together with an
inclusion A → I in ABSG,M. From Corollary 2.2.10 we then deduce an inclusion
A→ Iδ in DISG,M and from Lemma 2.2.11 that Iδ is an injective object in DISG,M,
which ends the proof.

Lemma 2.2.13.
Let G be a profinite group and M a discrete monoid. Then the functor

(−)G,M : DISG,M → Ab

is left exact and additive (Ab denotes the category of abelian groups).

Proof.
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Since DISG,M and DISG×M coincide (cf. Remark 2.2.4) we can view the functor
(−)G,M as (−)G×M . Then Proposition 2.2.2 says

(−)G×M = HomZ[G×M ](Z,−)

which immediately gives the claim, since Hom(Z,−) is left exact and additive.

Proposition 2.2.12 and Lemma 2.2.13 together say that the right derivations for
(−)G,M , where G is a profinite group and M a discrete monoid, exist (cf. [Sta18, Tag
0156, Lemma 10.3.2 (2)]). This then leads us to the following definition.

Definition 2.2.14.
Let G be a profinite group and M a discrete monoid. Then
Hn(G,M ;−) := Rn(−)G,M denotes the n-th right derived functor of (−)G,M and is
called the n-th cohomology group.

Remark 2.2.15.
Recall that the right derived functors are computed by choosing an injective resolution,
i.e. if G is a profinite group, M a discrete monoid and A ∈ DISG,M and In ∈ DISG,M

are injective objects for n ∈ N0 such that the complex

0 // A // I0 // I1 // · · ·

is exact, then it is Hn(G,M ;A) = Hn((I•)G,M ). Note, that if A itself is an injective
object, than it is Hn(G,M ;A) = 0 for n > 0 since then

0 // A // A // 0

is an injective resolution.

Lemma 2.2.16.
Let G be a profinite group, N /G a closed, normal subgroup and M a discrete monoid.
Then the functors

(−)N,M : DISG,M // DISG/N

(−)N : DISG,M // DISG/N,M

send injectives to injectives.

Proof.
Let I ∈ DISG,M an injective object, A,B ∈ DISG/N, f : A → B injective,

https://stacks.math.columbia.edu/tag/05TI
https://stacks.math.columbia.edu/tag/05TI


28 2.2. Monoid Cohomology

u : A→ IN,M and consider the following diagram

0 // A
f //

u
��

B

IN,M

��
I.

We then let M trivially act on A and B and define g · x := [g] · x for g ∈ G and
x ∈ A respectively x ∈ B. Here [g] denotes the class of g in G/N . This then defines
a continuous G action on both, A and B. Since this action obviously commutes with
the trivial action from M we have A,B ∈ DISG,M. Since I is an injective object, we
then get a morphism v : B → I in DISG,M such that the following diagram commutes

0 // A
f //

u
��

B

v

��

IN,M

��
I.

Let b ∈ B and z ∈ N or z ∈M . Then we have

z · f(b) = f(z · b) = f(b),

i.e. im(f) ⊆ IN,M and v : B → IN,M is a morphism in DISG/N which then proves
that IN,M is an injective object in DISG/N.
In exact the same way, one proves that IN ∈ DISG/N,M is an injective object: For
A,B ∈ DISG/N,M one defines a G-action as above and one carries the M -action
instead of letting M act trivially. The rest of the proof is literally equal.

Proposition 2.2.17.
Let G be a profinite group, N /G a closed, normal subgroup and M a discrete monoid.
Then for every A ∈ DISG,M there are two cohomological spectral sequences converging
to Hn(G,M ;A):

Ha(G/N,Hb(N,M ;A)) +3 Ha+b(G,M ;A)

Ha(G/N,M ;Hb(N,A)) +3 Ha+b(G,M ;A).
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Proof.
Proposition 2.2.12 says that the categories DISG,M, DISG/N,M and DISG/N have
enough injectives. Lemma 2.2.16 says that the functors (−)N,M : DISG,M → DISG/N

respectively
(−)N : DISG,M → DISG/N,M send injectives to injectives. Furthermore, since the
actions of G and M on objects of DISG,M commute, the compositions

DISG,M
(−)N,M

// DISG/N
(−)G/N

// Ab

and

DISG,M
(−)N // DISG/N,M

(−)G/N,M

// Ab

both coincide with (−)G,M . This then leads to the claimed Grothendieck spectral
sequences.

As we now have accomplished the abstract theory for our goals, we want to discuss
how to compute these cohomology groups when the monoid action arises from an
endomorphism. First of all, we want to compare N0-actions with Z[X]-modules.

Remark 2.2.18.
The category ABSN0 coincides with the category of Z[X]-modules.

Proof.
To avoid confusion, we denote the action of N0 on an abstract abelian group for this
proof by "∗" and the canonical action of Z by "·".
Let A ∈ ABSN0 . By X · a := 1 ∗ a we make A into a Z[X]-module. Conversely, if A
is a Z[X]-module, then by n ∗ a := Xn · a we get A ∈ ABSN0 . With these definitions
it is immediately clear, that also the morphisms coincide.

We made this remark, because we think it’s better to think of a Z[X]-module than
of an object of ABSN0 - just for avoiding confusion. In the following, we will switch
between these two concepts without mentioning it.

Remark 2.2.19.
Let G be a profinite group, A ∈ DISG,N0 . For every n ∈ N0 we can define an N0-action
on Cncts(G,A) by operating on the coefficients:

(X · f)(σ) := X · (f(σ)).
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Remark 2.2.20.
Let A•,• b a (commutative) double complex of abelian groups. We write Tot(A•,•) for
its total complex, by which we mean the complex with objects

Totn(A•,•) :=
⊕
i+j=n

Ai,j

and differentials

dnTot(A•,•) :=
⊕
i+j=n

di,jhor ◦ pri−1,j ⊕ (−1)idi,jvert ◦ pri,j−1.

If f•,• : A•,• → B•,• is a morphism of (commutative) double complexes, then

Totn(f•,•) : Totn(A•,•) // Totn(B•,•)

(aij)i+j=n
� // (fij(aij))i+j=n

defines a morphism of the corresponding total complexes.
If X• and Y • are complexes of abelian groups and g• : X• → Y • is a morphism of
complexes, then it also is a double complex concentrated in degrees 0 and 1 and we
again write Tot(g• : X• → Y •) for its total complex.

Remark 2.2.21.
Let G be a profinite group and A ∈ DISG. As in [NSW15, p. 12–13] we omit the
subscript "cts" for the notations introduced in Remark 2.1.8, i.e. we write

Xn(G,A) := Mapcts(G
n+1, A),

∂n for the differential Xn−1(G,A)→ Xn(G,A) and

Cn(G,A) := Xn(G,A)G.

Definition 2.2.22.
Let G be a profinite group and A ∈ DISG,N0 . Then define

C•
X(G,A) := Tot(C•(G,A)

X−1 // C•(G,A)),

H∗
X(G,A) := H∗(C•

X(G,A)).

If the N0-action on A comes from an endomorphism f ∈ EndG(A) (cf. Proposition
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2.2.1), then we also write

C•
f (G,A) := Tot(C•(G,A)

C•(G,f)−id // C•(G,A)),

H∗
f (G,A) := H∗(C•

f (G,A)).

If A ∈ ABSN0 then we also write H∗
X(A) for the cohomology of the complex A X−1−→ A

concentrated in the degrees 0 and 1.

The aim now is to see that the cohomology of the complex C•
X(G,A) coincides

with the right derived functors of (−)G,N0 . Before proving this, we want to make a
smaller step and explain first how to compute the right derived functors of (−)N0 and
that these coincide with the cohomology of the complex A X−1−→ A concentrated in
degrees 0 and 1.

Proposition 2.2.23.
Let A ∈ ABSN0. Then we have

H0(N0;A) = AN0 ,

H1(N0;A) = AN0 ,

H i(N0;A) = 0 for all i ∈ Z \ {0, 1}.

In particular, the right derived functors of (−)N0 coincide with the cohomology of the
complex A X−1−→ A concentrated in degrees 0 and 1. Using the notation from above,
this means that for all i ∈ Z there are natural isomorphisms

H i(N0;A) = Hi
X(A).

Proof.
In Proposition 2.2.2 we identified the functors (−)N0 and HomZ[X](Z,−). To compute
the right derived functors of HomZ[X](Z,−) for A, we also can compute the right
derived functors of HomZ[X](−, A) for Z. To do this, we need a projective resolution
of Z as Z[X]-module, where X acts as 1. Trivially Z[X] is a projective Z[X]-module
and therefore we get a projective resolution of Z by:

0 // Z[X] // Z[X] // Z // 0

P (X) � // (X − 1)P (X)

P (X) � // P (1).

This sequence is exact:
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The first map is injective since Z[X] is an integral domain and therefore (X− 1)P (X)

is zero if and only if P (X) is zero. The second map is surjective, since for z ∈ Z the
constant polynomial Pz(X) := z maps to z. The image of the first map is a subset
of the kernel of the second map, since X − 1 maps to zero under the second map.
If P (X) is in the kernel of the second map, then 1 is a root of P and there exists
Q(X) ∈ Z[X] such that (X − 1)Q(X) = P (X), i.e. the kernel of the second map
is also a subset of the first map. So, for computing the right derived functors of
HomZ[X](Z,−) for A, we have to compute the cohomology of the complex

HomZ[X](Z[X], A) // HomZ[X](Z[X], A)

f � // [P 7→ f((X − 1)P (X))]

concentrated in the degrees 0 and 1. But since HomZ[X](Z[X], A) ∼= A as Z[X]-module
this complex translates into

A // A

a � // (X − 1) · a.

This is exactly the second part of the claim. It remains to compute the cohomology
groups. From the observations above we get

Hn(N0;A) = (RnHomZ[X](−, A))(Z) = Hn(A
X−1−→ A).

We then can immediately deduce that Hn(N0;A) = 0 for n ∈ Z \ {0, 1} and we get

H0(N0;A) = ker(A
X−1−→ A)

= {a ∈ A | X · a = a}

= {a ∈ A | n ∗ a = a for all n ∈ N0}

= AN0

H1(N0;A) = coker(A
X−1−→ A)

= A/{a ∈ A | it exists b ∈ A such that (X − 1) · b = a}

= AN0 ,

what are exactly the claimed groups. Here, to avoid confusion, "∗" denotes the
operation from N0 on A.
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Proposition 2.2.24.
Let G be a profinite group and A ∈ DISG,N0. Then the double complex

K•,• := C•(G,A)
X−1 // C•(G,A)

gives rise to two spectral sequences converging to the cohomology H∗
X(G,A):

Ha
X(H

b(G,A)) +3 Ha+b
X (G,A)

Ha(G,Hb
X(A))

+3 Ha+b
X (G,A).

Proof.
Since for every n ∈ Z the double complex K•,• has at most two nonzero entries Kp,q

with p+ q = n, this is shown in [Sta18, Tag 012X, Lemma 12.22.6].

Lemma 2.2.25.
Let G be a profinite group and f : A → B be a morphism in DISG,N0. Then the
diagram

CnX(G,A)

∂A
��

Cn
X(G,f)

// CnX(G,B)

∂B
��

Cn+1
X (G,A)

Cn+1
X (G,f)

// Cn+1
X (G,B)

is commutative for all n ∈ N0.

Proof.
Let (x, y) ∈ CnX(G,A). Then compute

Cn+1
X (G, f)(∂A(x, y)) = Cn+1

X (G, f)(∂nA(x), (−1)n(X − 1) · x+ ∂n−1
A (y))

= (f ◦ (∂nA(x)), f ◦ ((−1)n(X − 1) · x+ ∂n−1
A (y))),

∂B(C
n
X(G, f)(x, y)) = ∂B(f ◦ x, f ◦ y)

= (∂nB(f ◦ x), (−1)n(X − 1) · (f ◦ x) + ∂n−1
B (f ◦ y)).

Since the diagram

Cn(G,A)

∂A
��

Cn(G,f) // Cn(G,B)

∂B
��

Cn+1(G,A)
Cn+1(G,f) // Cn+1(G,B)

is commutative for all n ∈ N0 (cf. [NSW15, Chapter I §3, p. 25]) we have ∂nB◦f = f◦∂nA

https://stacks.math.columbia.edu/tag/012X
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for all n ∈ N0 and since, by assumption, f respects the action of N0 we have
f ◦ (X − 1) = (X − 1) ◦ f . Using this in the above computation, we see that the
diagram in fact commutes.

Lemma 2.2.26.
Let G be a profinite group and

0 // A
α // B

β // C // 0

be an exact sequence in DISG,N0. Then, for every n ∈ N0, the diagram

0 // CnX(G,A)

∂A
��

Cn
X(G,α)

// CnX(G,B)

∂B
��

Cn
X(G,β)

// CnX(G,C)

∂C
��

// 0

0 // Cn+1
X (G,A)

Cn+1
X (G,α)

// Cn+1
X (G,B)

Cn+1
X (G,β)

// Cn+1
X (G,C) // 0

is commutative with exact rows, i.e. the sequence

0 // C•
X(G,A)

C•
X(G,α)

// C•
X(G,B)

C•
X(G,β)

// C•
X(G,C)

// 0

is exact.

Proof.
The commutativity is Lemma 2.2.25. Since A,B and C are discrete groups, we deduce
from Corollary 2.1.12 that for all n ∈ N0 the sequence

0 // Cn(G,A)
Cn(G,α) // Cn(G,B)

Cn(G,β) // Cn(G,C) // 0

is exact. But since CnX(G,Z) = Cn(G,Z)⊕ Cn−1(G,Z) (where C−1(G,Z) = 0) and
CnX(G, η) = Cn(G, η) ⊕ Cn+1(G, η) for all Z ∈ DISG,N0 and any morphism η in
DISG,N0 , we immediately deduce that the sequence

0 // CnX(G,A)
Cn
X(G,α)

// CnX(G,B)
Cn
X(G,β)

// CnX(G,C)
// 0

is also exact.

Corollary 2.2.27.
Let G be a profinite group and

0 // A
α // B

β // C // 0
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be an exact sequence in DISG,N0. Then, for every n ∈ N0, the diagram

Cn
X(G,A)

im(∂n−1
A )

∂nA
��

Cn
X(G,α)

// C
n
X(G,B)

im(∂n−1
B )

∂nB
��

Cn
X(G,β)

// C
n
X(G,C)

im(∂n−1
C )

∂nC
��

// 0

0 // ker(∂n+1
A )

Cn+1
X (G,α)

// ker(∂n+1
B )

Cn+1
X (G,β)

// ker(∂n+1
C )

is commutative with exact rows. Here ∂nZ : C
n
X(G,Z)→ Cn+1

X (G,Z) denotes the n-th
differential for Z ∈ DISG,N0.

Proof.
The commutativity follows directly from Lemma 2.2.26. The upper row is the cokernel
sequence of the following commutative diagram with exact rows

0 // Cn−1
X (G,A)

∂n−1
A

��

Cn−1
X (G,α)

// Cn−1
X (G,B)

∂n−1
B

��

Cn−1
X (G,β)

// Cn−1
X (G,C)

∂n−1
C

��

// 0

0 // CnX(G,A)
Cn
X(G,α)

// CnX(G,B)
Cn
X(G,β)

// CnX(G,C)
// 0

and therefore it is exact. Similarly the lower row is the kernel sequence of the following
commutative diagram with exact rows

0 // CnX(G,A)

∂A
��

Cn
X(G,α)

// CnX(G,B)

∂B
��

Cn
X(G,β)

// CnX(G,C)

∂C
��

// 0

0 // Cn+1
X (G,A)

Cn+1
X (G,α)

// Cn+1
X (G,B)

Cn+1
X (G,β)

// Cn+1
X (G,C) // 0,

i.e. it is also exact.

Lemma 2.2.28.
Let G be a profinite group. The functors (Hn

X(G,−))n then form a cohomological
δ-functor, i.e. if

0 // A
α // B

β // C // 0

is an exact sequence in DISG,N0 then, for every n ∈ N0, there is a group homomorphism

δn : Hn
X(G,C)

// Hn+1
X (G,A)



36 2.2. Monoid Cohomology

such that the sequence

· · · // Hn
X(G,B) // Hn

X(G,C)
δn // Hn+1

X (G,A) // Hn+1
X (G,B) // · · ·

is exact.

Proof.
The proof is the standard application for the snake lemma (cf. for example at [NSW15,
(1.3.2) Theorem, Chapter I §3, p. 27]). We will give the proof here, to check that
it really holds in this situation. For the snake lemma see [NSW15, (1.3.1) Snake
Lemma, Chapter I §3, p. 25–26].
Let n ∈ N0. For Z ∈ DISG,N0 let ∂nZ : C

n
X(G,Z)→ Cn+1

X (G,Z) be the n-th differential.
Corollary 2.2.27 says that the following commutative diagram has exact rows:

Cn
X(G,A)

im(∂n−1
A )

∂nA
��

Cn
X(G,α)

// C
n
X(G,B)

im(∂n−1
B )

∂nB
��

Cn
X(G,β)

// C
n
X(G,C)

im(∂n−1
C )

∂nC
��

// 0

0 // ker(∂n+1
A )

Cn+1
X (G,α)

// ker(∂n+1
B )

Cn+1
X (G,β)

// ker(∂n+1
C )

Since the vertical kernels of the above diagram are the groups Hn
X(G, ?) and the

vertikal cokernels are the groups Hn+1
X (G, ?) the snake lemma then says that there is

an exact sequence1

Hn
X(G,A)

// Hn
X(G,B) // Hn

X(G,C)

δn

// Hn+1
X (G,A) // Hn+1

X (G,B) // Hn+1
X (G,C).

Doing this for all n ∈ N0 and connecting the sequences, this is exactly the claim.

Lemma 2.2.29 (Adjunction of ⊗ and Hom).
Let R → S be a homomorphism of commutative rings, X a R-module and Y, Z be
S-modules. Then there holds

HomR(Y ⊗S Z,X) ∼= HomS(Y,HomR(Z,X)),

where HomR(Z,X) is a R-module via (r · f)(z) := r(f(z)) for all r ∈ R, and z ∈ Z.

Proof. [Sta18, Tag 05G3, Lemma 10.13.5]

1The snake arrow is from https://www.latex4technics.com/?note=93q

https://stacks.math.columbia.edu/tag/05G3
https://www.latex4technics.com/?note=93q
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Lemma 2.2.30.
Let G be a group. Then there holds

Z[G][X] ∼= Z[G]⊗Z Z[X].

Proof.
First we want to note that the elements of Z[G]⊗Z Z[X] can be written in the form∑

i(ηi ⊗Xi).
We will show the claim by showing that the homomorphism

Z[G][X] // Z[G]⊗ Z[X]∑n
i=0

(∑
g∈G x

(i)
g · g

)
Xi � //

∑n
i=0

((∑
g∈G x

(i)
g · g

)
⊗Xi

)
is an isomorphism. But with the remark of the beginning, that every element of
Z[G]⊗Z Z[X] can be written in the form

∑
i ηi ⊗Xi, it is immediately clear that

Z[G]⊗Z Z[X] // Z[G][X]∑n
i=0

(
ηi ⊗Xi

) � //
∑n

i=0 ηiX
i

is the inverse map.

Lemma 2.2.31.
Let G be an abelian profinite group. Then, for every n ∈ N the functor Hn

X(G,−) is ef-
faceable, i.e. for every A ∈ DISG,N0 there exists a B ∈ DISG,N0 and a monomorphism
u : A→ B in DISG,N0 such that Hn

X(G, u) = 0.

Proof.
For this proof let I be an arbitrary product of Q/Z. Then I is an injective Z-module.
Note that every Z-module can be embedded in such a module. Then also every object
from ABSG,N0 can be embedded in a module of the form HomZ(Z[G][X], I). With
Corollary 2.2.10 we than can conclude that every object of DISG,N0 can be embedded
in a module of the form HomZ(Z[G][X], I)δ. Therefore it is enough if we show

Hn
X(G,HomZ(Z[G][X], I)δ) = 0 for all n > 0.

Set T := HomZ(Z[G][X], I). First we want to see that T δ is an injective object in
DISG. Recall from Lemma 2.2.11 that it is in fact an injective object in DISG,N0 .
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We have

T = HomZ(Z[G][X], I)

= HomZ(Z[G]⊗Z Z[X], I)

= HomZ(Z[G],HomZ(Z[X], I)).

Here the second equation comes from Lemma 2.2.30 and the third from Lemma 2.2.29.
Since Z[X] ∼=

⊕
N0

Z we get HomZ(Z[X], I) ∼=
∏

N0
I which then is again a product

of Q/Z (since I is so). Since then HomZ(Z[X], I) is an injective Z-module, T is an
injective object in ABSG and with Lemma 2.2.11 we then see that T δ also is an
injective object in DISG. In particular it is Hb(G,T δ) = 0 for all b > 0.
Next, we want to see that (T δ)G is an injective object in ABSN0 . Recall from Corollary
2.2.8 that (T δ)G = TG. We then compute

(T δ)G = TG = HomZ(Z[G][X], I)G

= HomZ[G](Z[G][X], I)

= HomZ[G](Z[G]⊗Z Z[X], I)

= HomZ(Z[X],HomZ[G](Z[G], I))

= HomZ(Z[X], I).

As above, the third equation comes from Lemma 2.2.30 and the fourth from Lemma
2.2.29. But this shows that (T δ)G is an injective object in ABSN0 and since Ha

X(−)
coincides with Ha(N0;−) (cf. Proposition 2.2.23), which itself is the a-th right derived
functor of (−)N0 , we then get Ha

X((T
δ)G) = 0 for a > 0 (cf. Remark 2.2.15).

Combining these two results, we obtain

Ha
X(H

b(G,T δ)) = 0 if a > 0 or b > 0.

Since Proposition 2.2.24 says that

Ha
X(H

b(G,T δ))⇒ Ha+b
X (G,T δ)

we conclude that Hn
X(G,T

δ) = 0 if n > 0, as desired.

Corollary 2.2.32.
Let G be a profinite group. Then the family of functors (Hn

X(−))n from DISG,N0 to
Ab forms a universal delta functor.

Proof.
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Lemma 2.2.28 says that (Hn
X(−))n forms a delta functor and Lemma 2.2.31 says that

the functors Hn
X(−) are effaceable for n > 0. This together shows that (Hn

X(−))n is
a universal delta functor.

Theorem 2.2.33.
Let G be a profinite group. Then we have

Hn
X(G,A) = Hn(G,N0;A)

for all n ∈ N0 and A ∈ DISG,N0.

Proof.
Since (Hn(G,N0;−))n are the right derived functors of (−)G,N0 this is a universal
delta functor and since (Hn

X(G,−))n is also an universal delta functor (cf. Corollary
2.2.32), it remains to check that they coincide in degree 0. For this, let A ∈ DISG,N0 .
We have

H0(G,N0;A) = AG,N0

and

H0
X(G,A) = H0(C•

X(G,A))

= ker(A
d0−→ C1(G,A)) ∩ ker(A

X−1−→ A)

= AG ∩AX=1

Since, by definition, AX=1 = AN0 it follows immediately that AG,N0 = AG ∩AN0 .

Next we want reformulate Proposition 2.2.17 with the above theorem, just to avoid
confusions for latter applications.

Proposition 2.2.34.
Let G be a profinite group, N / G a closed, normal subgroup. Then there are two
cohomological spectral sequences converging to Hn

X(G,−):

Ha(G/N,Hb
X(N,A))

+3 Ha+b
X (G,M ;A)

Ha
X(G/N,H

b(N,A)) +3 Ha+b
X (G,M ;A).

Proof.
This is Proposition 2.2.17 using Hn(G,N0;−) = Hn

X(G,−) from Theorem 2.2.33.
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As for the standard continuous cohomology (cf. [NSW15, (2.7.2) Lemma, Chapter
II §7, p. 137]), we will also need a long exact sequence for H∗

X(G,−) in a slightly
different setting as in Lemma 2.2.28.

Proposition 2.2.35.
Let G be a profinite group and let

0 // A
α // B

β // C // 0

be a short exact sequence in TOPG,N0 such that the topology of A is induced by that of
B and such that β has a continuous, set theoretical section. Then there are continuous
homomorphisms

δn : Hn
X(G,C)

// Hn+1
X (G,A)

such that the sequence

· · · // Hn
X(G,B) // Hn

X(G,C)
δn // Hn+1

X (G,A) // Hn+1
X (G,B) // · · ·

is exact.

Proof.
Algebraically this is exactly the same proof as Lemma 2.2.28. It then remains to
check, that the occurring homomorphisms are continuous which is only for the δn

a real question. But this can be answered using a topological version of the snake
lemma, like [Sch99, Proposition 4, p. 133].

2.3 Some Homological Algebra

In this section we want to collect and prove some facts we will need later on.

Definition 2.3.1.
Let C• be a complex of abelian groups and n ∈ Z. Then we denote by C•[n] the shift
of this complex by n. This means, that for all i ∈ Z we have Ci[n] = Ci+n.

Lemma 2.3.2.
Let Y • and Z• be complexes of abelian groups and let g• : Y • → Z• be a morphism
of complexes, such that every gi is surjective. Then there is a canonical, surjective
homomorphism

ker(diY ) ∩ ker gi � H i(Tot(g• : Y • → Z•)).
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In particular, if all the gi are bijective, we have

H i(Tot(g• : Y • → Z•)) = 0.

Proof.
For the clarity of the presentation we write H i := H i(Tot(g• : Y • → Z•)). The i-th
object of the total complex is Y i × Zi−1 and the i-th differential diTot is

diTot = diY ◦ pr1 × (−1)igi ◦ pr1 + di−1
Z ◦ pr2.

We then compute

ker diTot = {(y, z) ∈ Y i × Zi−1 | diY (y) = 0, (−1)igi(y) + di−1
Z (z) = 0}

and

imdi−1
Tot = {(y, z) ∈ Y

i × Zi−1 |∃(y′, z′) ∈ Y i−1 × Zi−2 :

y = di−1
Y (y′), z = (−1)i−1gi−1(y′) + di−2

Z (z′)}

and we set Ai := ker diTot and Bi := imdi−1
Tot , i.e. we have H i = Ai/Bi. There is a

canonical homomorphism ker(diY ) ∩ ker gi → Ai sending y to (y, 0). Connecting with
the canonical projection then gives a homomorphism ker(diY ) ∩ ker gi → H i.
So, let (y, z) ∈ Ai. Since gi−1 is surjective there is an y′ ∈ Y i−1 such that
(−1)i−1gi−1(y′) = −z, i.e. we have (di−1

Y (y′),−z) = di−1
Tot(y

′, 0) ∈ Bi and there-
fore that the classes of (y, z) and (y + di−1

Y (y′), 0) in H i coincide. So it remains to
check y + di−1

Y (y′) ∈ ker(diY ) ∩ gi. We already have y, di−1
Y (y′) ∈ ker(diY ) and

gi(y) = (−1)i+1di−1
Z (z) = (−1)idi−1

Z ((−1)igi−1(y′)) = −gidi−1
Y (y′),

i.e. y + di−1
Y (y′) ∈ ker gi. So, the class of (y + di−1

Y (y′), 0) in H i is the image of
y + di−1

Y (y′) under the above map.
If now all the gi are bijective, we have ker(gi) = 0 for every i ∈ Z. Therefore it clearly
is

H i(Tot(g• : Y • → Z•)) = 0

for every i ∈ Z.
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Lemma 2.3.3.
Let

0 // X• f• // Y • g• // Z• // 0

be a short exact sequence of complexes of abelian groups. Then the sequence

0 // X• // Tot(Y • → Z•) // Tot(Y •/f•(X•)→ Z•) // 0

is also an exact sequence of complexes and for the cohomology we have

H i(X•) ∼= H i(Tot(g• : Y • → Z•)).

Proof.
First note, that f i(Xi) is a subgroup of the kernel of

pr ◦ dY : Y i // Y i+1 // Y i+1/f i+1(Xi+1)

and therefore we get a well defined homomorphism dY : Y i/f i(Xi)→ Y i+1/f i+1(Xi+1).
We then have to check that for every i ∈ Z the diagram

0 // Xi (f i,0) //

dX
��

Y i × Zi−1 pr×idZ //

dY ×gi+dZ
��

Y i/f i(Xi)× Zi−1 //

dY ×gi+dZ
��

0

0 // Xi+1 (f i+1,0) // Y i+1 × Zi pr×idZ // Y i+1/f i+1(Xi+1)× Zi // 0

is commutative with exact rows, where gi : Y i/f i(Xi)→ Zi is the from gi and the
given exact sequence induced homomorphism. We start with the exactness:
By assumption, for every i ∈ Z the homomorphism f i : Xi → Y i is injective and
therefore the sequence

0 // Xi f i // Y i pr // Y i/f i(Xi) // 0

is exact for every i ∈ Z. But then also the sequence

0 // Xi (f i,0) // Y i × Zi−1 pr×idZ // Y i/f i(Xi)× Zi−1 // 0

is exact for every i ∈ Z. To the commutativity:
By assumption we have f i+1 ◦ dX = dY ◦ f i for all i ∈ Z, which means that the
first square of the above diagram commutes. For the second square, let y ∈ Y i and
z ∈ Zi−1. By definition, we have pr(dY (y)) = dY (pr(y)) and gi(pr(y)) = gi(y) and
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therefore

(pr(dY (y)), g
i(y) + dZ(z)) = (dY (pr(y)), g

i(pr(y)) + dZ(z)),

i.e. the second square commutes.
So the short sequence

0 // X• // Tot(Y • → Z•) // Tot(Y •/f•(X•)→ Z•) // 0

is exact and we obtain from the long exact cohomology sequence that for every i ∈ Z
the sequence

H i−1(Tot(g• : Y •/f•(X•)→ Z•)) // H i(X•) // H i(Tot(g• : Y • → Z•))

// H i(Tot(g• : Y •/f•(X•)→ Z•))

is exact. Lemma 2.3.2 says that the first and the last term in above sequence are 0

and therefore we get the claimed isomorphism.

Corollary 2.3.4.
Let G be a profinite group, A,B ∈ DISG and f a continuous endomorphism of B
which respects the action of G such that the sequence

0 // A // B
f−1 // B // 0

is exact. Then we have
H i(G,A) = Hi

f (G,B)

for all i ≥ 0.

Proof.
This is just the above Lemma 2.3.3 with Corollary 2.1.12 and the notation from
Definition 2.2.22.

Corollary 2.3.5.
Let G be a profinite group and let

0 // A
α // B

β // C // 0

be an exact sequence in TOPG, such that the topology of A is induced by that of B
and sucht that β has a continuous, set theoretical section. Then the exact sequence of
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complexes

0 // C•
cts(G,A)

C•
cts(G,α) // C•

cts(G,B)
C•

cts(G,β) // C•
cts(G,C) // 0

(cf. Corollary 2.1.12) induces

AG = H0
cts(G,A)

∼= H0(Tot(C•
cts(G, β) : C

•
cts(G,B)→ C•

cts(G,C)))

and
CG → H1

cts(G,A)
∼= H1(Tot(C•

cts(G, β) : C
•
cts(G,B)→ C•

cts(G,C))).

Proof.
This is an immediate consequence of the combination of the above Lemma 2.3.3 with
Corollary 2.1.12.

Now let’s turn to some facts about projective limits.

Remark 2.3.6.
Note that C•

cts(G,−) commutes with projective limits, since the functors Mapcts(G
n,−)

and (−)G commute with projective limits, i.e. if A = lim←−nAn, then

C•
cts(G,A)

∼= lim←−
n

C•
cts(G,An).

Lemma 2.3.7.
Let G be a profinite group, A ∈ TOPG and let (An)n be an inverse system in TOPG

such that A = lim←−nAn in TOPG. Let furthermore f ∈ Endcts,G(A), such that
f = lim←− fn with fn ∈ Endcts,G(An). Then there holds

C•
f (G,A)

∼= lim←−
n

C•
f (G,An).

Proof.
First we want to note, that for groups X = lim←−Xn and Y = lim←−Yn always holds
X × Y = lim←−n(Xn × Yn).
This means that the objects of the two complexes C•

f (G,A) and lim←−C•
f (G,An) coincide,

so it remains to check that the differentials do as well. If we denote the i-th object of
C•
cts(G,A) by Ci and the differential by di then it suffices to check that the following
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cube is commutative

Ci
Ci(G,f) //

di

��

##

Ci

di

��

##
Ci

lim←− Ci(G,fn)
//

di

��

Ci

di

��

Ci+1 Ci(G,f) //

##

Ci+1

##
Ci+1

lim←− Ci(G,fn)
// Ci+1.

This is a direct consequence from the assumption f = lim←− fn and that C•
cts(G,−)

commutes with inverse limits.

Lemma 2.3.8.
Let G be a profinite group and (An)n be an inverse system in TOPG such that the
inverse system of complexes (C•

cts(G,An))n has surjective transition maps and let
A := lim←−nAn. If f ∈ Endcts,G(A) then also the system (C•

f (G,An))n has surjective
transition maps.

Proof.
By assumption, for every k ∈ N0, the transition map Ckcts(G,An)→ Ckcts(G,An−1) is
surjective. But then also the transition map

Ckcts(G,An)⊕ Ck−1
cts (G,An) // Ckcts(G,An−1)⊕ Ck−1

cts (G,An−1)

Ckf (G,An) Ckf (G,An−1)

is surjective, since it’s the direct sum of two surjective maps.

Definition 2.3.9.
An inverse system (of abelian groups) (Xn)n∈N is called Mittag-Leffler (ML) if for
any n ∈ N, there is an m ≥ n such that the image of the transition maps Xk → Xn

coincide for all k ≥ m (cf. [NSW15, p. 138]).
An inverse system (of abelian groups) (Xn)n∈N is called Mittag-Leffler zero (ML-
zero) if for any n ∈ N there is an m ≥ n such that the transition map Xk → Xn is
zero for all k ≥ m (cf. [NSW15, p. 139]).
A morphism (Xn)n → (Yn)n of inverse systems is called Mittag-Leffler isomor-
phism (ML-isomorphism) if the corresponding systems of kernels and cokernels
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are ML-zero.
By lim←−

r we denote the r-th right derived functor of lim←−.

Proposition 2.3.10.
Let (Xn) und (Yn) be inverse systems of abelian groups.

1. If (Xn) has surjective transition maps, then it is ML.

2. If (Xn) is ML then lim←−
r
n
Xn = 0 for all r ≥ 0.

3. If fn : Xn → Yn is a ML-isomorphism then for all i ≥ 0 the homomorphism

lim←−
i
n
fn : lim←−

i
n
Xn

// lim←−
i
n
Yn

is an isomorphism.

Proof.

1. Let αnm : Xm → Xn denote the transition map form ≥ n. Then it is im(αnm) =

Xn for all m ≥ n, i.e. the system Xn is ML.

2. [NSW15, Chapter II §7, (2.7.4) Proposition, p. 140]

3. First note that the systems (ker(fn)) and (coker(fn)) are ML since they are
ML-zero and therefore it holds lim←−

i
n
ker(fn) = 0 and lim←−

i
n
coker(fn) = 0 for all

i ≥ 0. Now consider the following two short exact sequences

0 // ker(fn) // Xn
// im(fn) // 0,

0 // im(fn) // Yn // coker(fn) // 0.

Taking inverse limits together with the assumption that both systems (ker(fn))

and (coker(fn)) are ML-zero then gives the long exact sequences

// 0 // lim←−
i
n
Xn

// lim←−
i
n
im(fn) // 0 // lim←−

i+1
n

Xn
// lim←−

i+1
n

im(fn) //

// 0 // lim←−
i
n
im(fn) // lim←−

i
n
Yn // 0 // lim←−

i+1
n

im(fn) // lim←−
i+1
n

Yn // .

Since im(fn) → Yn is the canonical inclusion, the second sequence implies
lim←−

i
n
im(fn) = lim←−

i
n
Yn for all i ≥ 0. Together with the first sequence, this then

says that

lim←−
i
n
fn : lim←−

i
n
Xn

∼= // lim←−
i
n
im(fn) = lim←−

i
n
Yn
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is an isomorphism for all i ≥ 0.

Proposition 2.3.11.
Let (X•

n) and (Y •
n ) be inverse systems of complexes of abelian groups such that the

transition maps Xi
n+1 → Xi

n and Y i
n+1 → Y i

n are surjective for all i ∈ Z and n ≥ 0.

1. For all i ∈ Z we get a short exact sequence

0 // lim←−
1
n
H i−1(X•

n) // H i(lim←−nX
•
n) // lim←−nH

i(X•
n) // 0.

2. Let (f•n) : (X•
n)→ (Y •

n ) be a morphism of inverse systems of complexes. If the
induced map on cohomology H i(f•n) : H

i(X•
n)→ H i(Y •

n ) is a ML-isomorphism
for all i ∈ Z, then lim←−n(f

•
n) : lim←−nX

•
n → lim←−n Y

•
n is a quasi isomorphism.

Proof.

1. [Soc80, Chapter 3, Proposition 1, p. 531; Corollary1.1, p. 535–536]

2. From the first part of the proposition we obtain for every i ∈ Z a commutative
diagram with exact rows

0 // lim←−
1
n
H i−1(X•

n) //

lim←−
1

n
Hi−1(f•n)

��

H i(lim←−nX
•
n) //

Hi(lim←−n
f•n)

��

lim←−nH
i(X•

n)

lim←−n
Hi(f•n)

��

// 0

0 // lim←−
1
n
H i−1(Y •

n ) // H i(lim←−n Y
•
n ) // lim←−nH

i(Y •
n ) // 0.

The assumption that H i(f•n) is a ML-isomorphism for all i ∈ Z then says that
the left and the right horizontal maps in the above diagram are isomorphisms
(cf. Proposition 2.3.10). The 5-Lemma then implies that also H i(lim←−n f

•
n) is an

isomorphism for all i ∈ Z, i.e. lim←−n f
•
n is a quasi isomorphism.

Remark 2.3.12.
Since isomorphisms of inverse systems are always ML-isomorphisms, the above Propo-
sition also states, that if (f•n) : (X•

n)→ (Y •
n ) is a quasi isomorphism of inverse systems

of complexes, for which the transition maps Xi
n+1 → Xi

n and Y i
n+1 → Y i

n are sur-
jective for all i ∈ Z and n ≥ 0, then also lim←−n(f

•
n) : lim←−nX

•
n → lim←−n Y

•
n is a quasi

isomorphism.
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Remark 2.3.13.
In the above Proposition 2.3.11 and Remark 2.3.12 one cannot easily drop the
assumption that the transition maps are surjective. In the following we will give an
example of two inverse systems of complexes which are quasi isomorphic, but their
projective limits are not. In our opinion, because of this example, in the proof of
[Sch06, Theorem 2.2.1, p. 702–705] right before [Sch06, Proposition 2.2.7, p. 703–705],
their should be an explanation why it really is enough to prove this proposition.
The first inverse system of complexes we consider is the complex wich is everywhere
0. This complex and its projective limit complex clearly have cohomology equal to 0.
The nontrivial inverse system of complexes is the system consisting of

· · · // 0 // pnZ // Z // Z/pnZ // 0 // · · ·

for every n. The transition maps of the inverse system (pnZ)n, (Z)n and (Z/pnZ)n
are the inclusion for the first two and the canonical projection for the last one. Then
one immediately obtains that the inverse system (pnZ)n has not surjective transition
maps. Since this complex is exact, we have for every n ∈ N a quasi isomorphism

· · · // 0 //

��

pnZ //

��

Z //

��

Z/pnZ //

��

0

��

// · · ·

· · · // 0 // 0 // 0 // 0 // 0 // · · · .

Taking projective limits of these inverse systems of complexes then gives

· · · // 0 //

��

0 //

��

Z //

��

Zp //

��

0

��

// · · ·

· · · // 0 // 0 // 0 // 0 // 0 // · · · .

But Z 6= Zp and therefore the upper complex has a nontrivial cohomology groups
equal to Zp/Z while the lower complex still has cohomology equal to zero.

We will end this section with a proposition with strongly reminds on the universal
coefficient theorem in the sense of [Che09, Theorem 3.21, p. 13] , but for which there
is no proper reference. Instead of explaining how consisting statements transfer to
our, we decided us to give a straightforward proof of the proposition.

Proposition 2.3.14.
Let R be a commutative ring with unit, C• be a cochain complex of R-modules and V
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a flat R-module. Then there holds

H∗(C•)⊗R V ∼= H∗(C• ⊗R V ).

Proof.
This is [Nek07, (3.4.4) Proposition, p. 66–67]





Chapter 3

Lubin-Tate (ϕ,Γ)-modules

The goal in this chapter is to generalize the equivalence of categories from [Sch17] in
a way similar to the original result [FO10, Theorem 4.22, p. 82] for (φ,Γ)-modules in
the cyclotomic case. Namely, if K|L|Qp are finite extensions, we want to establish an
equivalence of categories between the category of continuous OL-representations of the
absolute Galois group GK and a yet to be defined category of étale (ϕL,ΓK)-modules.
In order to do this, we will go through the book [Sch17], starting around section 1.7
and explain how one transfers the results to the relative case of a finite extension of
L. Unfortunately we have to permute the order of [Sch17], since the construction of
the coefficient ring involves some facts, which in loc. cit. are important only later on.
One more useful source will be [Sch11].

3.1 Preparations and Notations

Let p be a prime number and let Qp be a fixed algebraic closure of the p-adic numbers
Qp and let as usual Zp be the integral p-adic numbers. Each finite extension of Qp is
considered to be a subfield of Qp. Let Cp be the completion of Qp with respect to
the valuation vp with vp(p) = 1 and let OCp be the ring of integers of Cp.
Let furthermore L|Qp be a finite extension, dL its degree over Qp, OL the ring of
integers, πL ∈ OL a prime element, kL the residue class field, qL = pr its cardinality,
Lur the maximal unramified extension of Qp in L with ring of integers OLur .
Let furthermore K|L be a finite extension, dK its degree over Qp, OK its ring of
integers, πK ∈ OK a prime element, kK the residue class field, qK its cardinality, Kur

the maximal unramified extension of Qp in K with ring of integers OKur .
We will denote the absolute Galois groups of Qp, L and K by GQp , GL and GK

respectively.
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By W (·)L we will denote ramified Witt vectors (cf. [Sch17, Section 1.1, p. 6–21]).
Roughly speaking, these are standard Witt vectors tensored with OL (cf. [Sch17,
Proposition 1.1.26, p. 23–24]).
A perfectoid field K ⊆ Cp is a complete field, such that its value group |K×| is
dense in R×

+ and which satisfies (OK/pOK)
p = OK/pOK (cf. [Sch17, p. 42]).

Let K be a perfectoid field. The tilt K[ of K is the fraction field of the ring

OK[ := lim←−
x 7→xqL

OK/$OK,

where $ is an element in OK such that |$| ≥ |πL|. In fact, this definition is
independent from the choice of the element $ (cf. [Sch17, Lemma 1.4.5, p. 43–44]).
The field K[ is perfect and complete and has characteristic p (cf. [Sch17, Proposition
1.4.7, p. 45]). Moreover, the field C[p is algebraically closed (cf. [Sch17, Proposition
1.4.10, p. 46–47]). The theory of perfectoid fields was originally established by Peter
Scholze (cf. [Sch11]) but Schneider’s book covers all of the theory we do need here.
Let from now on, as in [Sch17, Definition 1.3.2, p. 29], φ ∈ RJX1, . . . XnK be a fixed
Frobenius power series associated to πL, i.e. we have

φ(X) ≡ πLX mod deg 2

φ(X) = XqL mod πLOLJXK.

Let furthermore Gφ ∈ OLJX,Y K be the Lubin-Tate formal group which belongs to
φ (cf. [Sch17, Proposition 1.3.4, p. 31]). For a ∈ OL denote by [a]φ ∈ OLJXK the
corresponding endomorphism of Gφ (cf. [Sch17, Proposition 1.3.6, p. 32]). Note
that we then have [a]φ(X) ≡ aX mod deg 2 and [πL]φ = φ (loc. cit.). We then set
M := {x ∈ Qp | |x| < 1} and obtain that the operation

OL ×M //M

(a, x) � // [a]φ(z)

makes M into an OL-module (cf. [Sch17, p. 33]). Then, for every a ∈ OL, we can
view [a]φ as endomorphism of M and therefore are able to define

Gφ,n := ker([πnL]φ : M→M) = {x ∈M | [πnL]φ(x) = 0}.

Note that (Gφ,n)n is via [πL]φ an inverse system and we let

TGφ := lim←−
n

Gφ,n
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be the projective limit of this system. (cf. [Sch17, p. 50]). TGφ is also called the Tate
module of the group Gφ. From [Sch17, Proposition 1.3.10, p. 34] we can deduce that
TGφ is a free OL-module of rank one.
Following [Sch17, (1.3.9), p. 33] we let Ln = L(Gφ[π

n
L]) and L∞ = ∪nLn. De-

note as there the Galois group Gal(L∞|L) by ΓL, set ΓLn|L = Gal(Ln|L) and
HL = Gal(Qp|L∞). Define furthermore Kn := K(Gφ[π

n
L]) = KLn and

K∞ := ∪nKn = KL∞ as well as ΓK = Gal(K∞|K) and HK = Gal(Qp|K∞). These
definitions can be summarized in the following diagram:

Qp

HK

HL

GL

GK

K∞

ΓKL∞

ΓL K

L

Remark 3.1.1.
The group ΓL is isomorphic to O×

L via the Lubin-Tate character χLT.
Furthermore, ΓL acts continuously on TGφ via χL, i.e. for all γ ∈ ΓL and t ∈ TGφ

we have
γ · t = χL(γ) · t = [χL(γ)]φ(t).

Proof.
For the first assertion see [Sch17, (1.3.12),p. 36], the second follows immediately from
[Sch17, (1.3.11),p. 34–35] and is also stated at [Sch17, (1.4.17),p. 51].

Remark 3.1.2.
One can view ΓK as an open subgroup of ΓL.
If, in addition, K|L is unramified, then we have ΓK ∼= ΓL.

Proof.
GK is a subgroup of GL, it is closed (since it corresponds to a subfield of Qp|L) and
it’s index is (GL : GK) = [K : L], which is finite, i.e. GK is an open subgroup of GL.
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Furthermore because of K∞ = KL∞ it is HK = HL ∩GK , which is the kernel of the
canonical homomorphism GK ↪→ GL � GL/HL. Since the canonical projection is,
by definition, open, this homomorphism is continuous and open and therefore induces
a continuous and open inclusion

ΓK ∼= GK/HK
� � // GL/HL

∼= ΓL.

Let now K|L be unramified. Since, for all n ∈ N the finite extension Ln|L is
Galois and totally ramified (cf. [Sch17, Proposition 1.3.12, p. 35–36]), the extension
Kn = KLn|K also is Galois and totally ramified. The Galois group of Kn|K then
is isomorphic to Gal(Ln|Ln ∩K) but since Ln|L is totally ramified and K|L is, by
assumption, unramified it clearly is Ln ∩K = L and therefore we obtain

Gal(Ln|L) ∼= Gal(Kn|K).

From this we deduce the claimed isomorphism

ΓL = lim←−
n

Gal(Ln|L) ∼= lim←−
n

Gal(Kn|K) = ΓK .

3.2 The coefficient ring

We first want to recall the definition of the coefficient ring used in [Sch17] and then
deduce the coefficient ring in our general case.
Before going into the construction of the coefficient ring, we want to recall the ring

AL := lim←−
n

OL/π
n
LOL((X)),

from [Sch17, p. 75]. This ring will be prototypical for our coefficients if we can bring
the variable X to life. Schneider then explains, that AL carries an action from ΓL by

ΓL ×AL
// AL

(γ, f) � // f([χL(γ)]φ(X)).

and an injective OL-algebra endomorphism

ϕL : AL
// AL

f � // f([πL]φ(X))
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(cf. [Sch17, p. 78]). At [Sch17, p. 79] Schneider defines a weak topology on AL, for
which the OLJXK-submodules

Um := XmOLJXK + πmL AL

form a fundamental system of open neighbourhoods of 0 ∈ AL. He makes several
observations for AL which we want to summarize in the following proposition.

Proposition 3.2.1.

1. As ϕL(AL)-module AL is free with basis 1, X, . . . ,XqL−1.

2. With respect to the weak topology AL is a complete Hausdorff topological OL-
algebra.

3. The endomorphism ϕL and the ΓL-action are continuous for the weak topology.

Proof.

1. [Sch17, Proposition 1.7.3, p. 78].

2. [Sch17, Lemma 1.7.6, p. 79–80].

3. [Sch17, Proposition 1.7.8, p. 80–82].

Let us now head towards the definition of our coefficient ring. An important part
is, that one can find an element ω ∈ OC[

p
, such that X 7→ ω defines an inclusion

kL((X)) ↪→ C[p. As in [Sch17, p. 50] we denote the image of this inclusion by EL and
we want to recall from loc. cit. that EL is a complete nonarchimedean discretely
valued field, with uniformizer ω and residue class field kL. Let in addition E+

L denote
the ring of integers inside EL. Furthermore, EL carries a continuous operation
by ΓL, for wich we have γ · ω = [χL(γ)]φ(ω) mod πL (cf. [Sch17, Lemma 1.4.15,
p. 51]). By raising elements to its qL-th power, it is clear that EL also carries a
Frobenius homomorphism, which is continuous and the reduction modulo p of ϕL.
Let furthermore Esep

L denote the separable closure of EL inside C[p and let Esep,+
L

denote the integral closure of E+
L inside Esep

L . A really helpful fact is the following:

Theorem 3.2.2.
The Galois group Gal(Esep

L |EL) is isomorphic to HL.

Proof.
This is [Sch17, Section 1.6, p. 68–75] and [Sch17, Theorem 1.6.7, p. 73–74] in particular.
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Then Schneider lifts ω to W (EL)L ⊆ W (OC[
p
)L and calls this lift ωφ (cf. [Sch17,

Section 2.1, p. 84–98; in particular p. 93]). Here one cannot just take the Teichmüller
lift, because one wants that the lift fulfills the following relations

Fr(ωφ) = [πL]φ(ωφ)

γ · ωφ = [χL(γ)]φ(ωφ)

for all γ ∈ ΓL and where Fr is the Frobenius on W (C[p)L (cf. [Sch17, Lemma 2.1.13,
p. 92–93] for the Frobenius and [Sch17, Lemma 2.1.15, p. 95] for the ΓL-action). Similar
to the construction of EL, sending X to ωφ then defines an inclusion AL ↪→W (EL)L

( cf. [Sch17, p. 94]). In Particular, it gives us a commutative square (loc. cit.)

AL

X 7→ωφ //

��

W (EL)L

��
kL((X))

X 7→ω // EL.

Following Schneider, we let AL denote the image of the inclusion AL ↪→W (EL)L.
In addition, define

A+
L := OLJωφK = AL ∩W (E+

L )L.

He then also endows AL with a weak topology, induced by that from W (C[p)L, and
observes that the isomorphism AL

∼= AL then is topological for the weak topologies
on both sides (cf. [Sch17, Proposition 2.1.16, p. 95–96]). Furthermore, he proves that
this topological isomorphism respects the ΓL-actions on both sides, where AL-carries
a ΓL-action induced from the GL-action of W (C[p)L (cf. [Sch17, p. 94]) and states that
what is ϕL on AL is the Frobenius on AL, which again is induced from the Frobenius
on W (C[p)L (cf. [Sch17, Proposition 2.1.16, p. 95–96]). We therefore denote the
Frobenius on AL also by ϕL. An immediate consequence then is, that the ΓL-action
and ϕL are continuous on AL.
This then is the coefficient ring in for Schneiders (ϕL,ΓL)-modules (cf. [Sch17,
Definition 2.2.6, p. 100–101]) but since we want to establish (ϕ,Γ)-modules over a
finite extension K|L as it was done in the classical way (cf. [FO10, Definition 4.21,
p. 81]) for finite extensions of Qp, we transfer this construction to our situation. Let for
this Anr

L ⊆W (Esep
L )L be the maximal unramified extension of AL inside W (Esep

L )L.
In particular [Sch17, Lemma 3.1.3, p. 112–113] says that for every finite, separable
extension F |EL inside Esep

L , there exists a unique ring AL(F ) ⊆W (Esep
L )L containing

AL such that Anr
L is the colimit of the family AL(F ). Additionally Schneider defines

the ring A as the closure of Anr
L inside W (Esep

L ) with respect to the πL-adic topology
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and observes (cf. [Sch17, p. 113 and Remark 3.14, p. 114])

A ∼= lim←−
n

Anr
L /π

n
LA

nr
L .

He then also states that both, Anr
L and A, have an action from GL, that the Frobenius

on W (Esep
L ) preserves both rings, that they are discrete valuation rings with prime

element πL, where A is even complete and that their residue class field is Esep
L (cf.

[Sch17, p. 113–114]). In fact, the GL-action on both Anr
L and A is continuous for

the weak topologies, since the GL action on W (C[p)L is continuous for the weak
topology (cf. [Sch17, Lemma 1.4.13, p. 48–49] and [Sch17, Lemma 1.5.3, p. 65–66])
and both, the weak topology and the GL action on Anr

L respectively A, are induced
form W (C[p)L. In addition, then every subgroup of GL acts continuously on Anr

L and
A. Furthermore we have the relation (cf. [Sch17, Lemma 3.1.6, p. 115–116])

(A)HL = AL.

This then leads us to the definition

AK := (A)HK .

In addition, define

A+ := A ∩W (Esep,+
L )L

Anr,+
L := Anr

L ∩W (Esep,+
L )L

A+
K := AK|L ∩W (Esep,+

L )L.

Then, since by definition it is AL ⊆ AK|L ⊆W (Esep
L )L, the ring AK|L is a complete

nonarchimedean discrete valuation ring with prime element πL and the restriction
of the Frobenius from W (Esep

L )L gives a ring endomorphism of AK|L which then
also commutes with ϕL (cf. [Sch17, Lemma 3.1.3, p. 112–113]). We will denote
this endomorphism by ϕK|L. Furthermore, since A carries an action from GL and
therefore also one from GK , the ring AK|L carries an action from ΓK . Next, we want
to define a weak topology an AK|L, deduce some properties and see that ϕK|L and
the action from ΓK are continuous for this topology.

Definition 3.2.3.
The weak topology on any of the rings A, Anr

L , AK|L and AL is defined as
the induced topology of the weak topology of (W (C[p))L (for the latter see [Sch17,
p. 64–65]).



58 3.2. The coefficient ring

Remark 3.2.4.
The weak topology on W (C[p)L is complete and Hausdorff (cf. [Sch17, Lemma 1.5.5,
p. 67–68]) and W (C[p)L is a topological ring with respect to its weak topology (cf.
[Sch17, Lemma 1.5.4, p. 66–67]). Therefore, the induced topology on any of the rings
A, Anr

L , AK|L and AL is Hausdorff and these rings are topological rings.

The question now is, wether ϕK|L and the action from ΓK are continuous for the
weak topology on AK|L. For this, we want to recall a well-known fact.

Lemma 3.2.5.
Let X and Y be topological spaces, f : X → Y be a continuous map and let Z ⊆ Y be
a subspace with im(f) ⊆ Z. Then f : X → Z is continuous.

Proposition 3.2.6.
The from W (Esep

L )L induced ΓK-action and the induced Frobenius ϕK|L on AK|L are
continuous.

Proof.
This now is an immediate consequence of Lemma 3.2.5 and the fact, that GL acts
continuously on W (Esep

L )L (cf. [Sch17, Lemma 1.5.3, p. 65–66]) as well as that Fr is
continuous on W (Esep

L ) with respect to the weak topology:
Since the maps

GL ×AK|L // GL ×W (Esep
L )L //W (Esep

L )L

and
AK|L

� � //W (Esep
L )L

Fr //W (Esep
L )L

are continuous as composite maps of continuous maps and their image is inside AK|L

(for the latter see [Sch17, Lemma 3.1.3, p. 112–113]) the claim follows.

We want to end this section by fixing some notation, defining weak topologies on
modules over any of the above rings and calculating the residue class field of AK|L.
We start by fixing notation and denote by the quotient field of AL. Similarly we
denote by B, BK|L and Bnr

L the quotient fields of A, AK|L and Anr
L , respectively.

Furthermore, set EK|L := (Esep
L )HK and let E+

K|L denote the integral closure of E+
L

inside EL. In Lemma 3.2.13 we will see that EK|L is the residue class field of AK|L.
Beforehand, we define weak topologies for modules.
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Lemma 3.2.7.
Let R ∈ {A,Anr

L ,AK|L,AL} and M be a finitely generated R-module. If k, l ∈ N
such that Rk � M and Rl � M are surjective homomorphisms, then the induced
quotient topologies on M coincide (where Rk and Rl carry the product topology of the
weak topology on R).

Proof. This is [Kle16, Lemma 3.2.2 (i), p. 100–102]. There, in fact, is no proof for
AK|L, but in his proof, the author only uses that the coefficient ring is a topological
ring with respect to the weak topology, what we stated in the above Remark 3.2.4.

Definition 3.2.8.
Let R ∈ {A,Anr

L ,AK|L,AL} and M be a finitely generated R-module. The weak
topology on M is defined as the quotient topology for any surjective homomorphism
Rk �M , where Rk carries the product topology of the weak topology on R.

Lemma 3.2.9.
Let R ∈ {A,Anr

L ,AK|L,AL} and M be a finitely generated R-module. Then M with
its weak topology is a topological R-module and if M = M1 ⊕M2, then the weak
topology on M coincides with the direct product of the weak topologies on the M1 and
M2.
Furthermore, if N is another finitely generated R-module and f : M → N is an
R-module homomorphism, then f is continuous with respect to the weak topologies on
both M and N .

Proof. This is [Kle16, Lemma 3.2.2 (ii)-(iv), p. 100–102]. Again, there is no proof for
AK|L, but the property used is that of a discrete valuation ring, which AK|L also
fulfills.

Proposition 3.2.10 (Relative Ax-Sen-Tate).
Let K be a nonarchimedean valued field of characteristic 0, K an algebraic closure
with completion C and L|K a Galois extension within K with completion L̂. Let
furthermore H ≤ Gal(L|K) be a closed subgroup. Then it holds

(L̂)H = (LH)∧.

Proof.
This is an immediate consequence of the usual Ax-Sen-Tate theorem (cf. [FO10,
Proposition 3.8, p. 43–44] ):
Since L|K is algebraic, K is also an algebraic closure for L and then we deduce (loc.
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cit.)
CGL = L̂.

Infinite Galois theory then says that we have H = Gal(L|LH) ∼= GLH/GL. Together
with Ax-Sen-Tate we then deduce

(LH)∧ = CGLH = (CGL)H = (L̂)H .

For our purposes the following integral version of the above Relative Ax-Sen-Tate
Theorem will be the interesting one.

Corollary 3.2.11.
Let K be a nonarchimedean valued field of characteristic 0, K an algebraic closure
with completion C and L|K a Galois extension within K with completion L̂. Denote
by O? the ring of integers of any of the above fields. Let furthermore H ≤ Gal(L|K)

be a closed subgroup. Then it holds

(O
L̂
)H = ((OL)

H)∧.

Proof.
For an element x ∈ C we have

x ∈ (O
L̂
)H ks +3 x ∈ (L̂)H with |x| ≤ 1 ks

3.2.10+3 x ∈ (LH)∧ with |x| ≤ 1 ks +3 x ∈ ((OL)
H)∧,

where the last equivalence comes from the fact that the integers of the completion
are the completion of the integers.

Lemma 3.2.12.
It holds (Anr

L )HK = AK|L.

Proof.
This is a direct consequence of the above Corollary 3.2.11. This namely says that

AK|L = (A)HK = ((Anr
L )HK )∧.

But since (Anr
L )HK |AL is finite and AL is complete, (Anr

L )HK itself is complete, i.e.
it is

(Anr
L )HK = ((Anr

L )HK )∧ = AK|L.
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Lemma 3.2.13.
EK|L is the residue class field of AK|L.

Proof.
We have an exact sequene

0 // Anr
L

·πL // Anr
L

// Anr
L /πLA

nr
L

// 0.

By taking HK-invariants and using (Anr
L )HK = AK|L from Lemma 3.2.12 we obtain

the exact sequence

0 // AK|L
·πL // AK|L // (Esep

L )HK // H1(HK ,A
nr
L ).

Since Bnr
L |BL is unramified, and therefore also tamely ramified, we get from [NSW15,

(6.1.10) Theorem, p. 342–342] that Anr
L is a cohomologically trivial HL-module. There-

fore the right term in the latter sequence is equal to zero and we get the exact sequence

0 // AK|L
·πL // AK|L // EK|L // 0

which ends the proof.

3.3 Concrete description of Weak Topologies

As the title says, the goal of this chapter is to give a concrete description of both,
the ring AK|L and its weak topology. We will start with the topology and first we
want the recall the description of the weak topology of AL and recall that a similar
description holds true on W (C[p)L

Remark 3.3.1.
[Sch17, Proposition 2.1.16 (i), p. 95–96] says that the weak topology AL has an
analogous description as the description above. Concretely, a fundamental system of
open neighbourhoods of 0 for the weak topology on AL is given by

ωmφ A+
L + πmLAL, m ≥ 1.

Remark 3.3.2.
A fundamental system of open neighbourhoods of 0 for the weak topology on W (C[p)L
is given by the W (OC[

p
)L-submodules

ωmφ W (OC[
p
)L + πmLW (C[p)L, m ≥ 1.
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Proof.
Because of |Φ0(ωφ)|[ = |ω|[ = |πL|qL/qL−1 < 1 (cf. [Sch17, Lemma 2.1.13 (i), p. 92–93]
for the first equality and [Sch17, Lemma 1.4.14, p. 50] for the second) this is exactly
[Sch17, Remark 2.1.5 (ii), p. 86–87].

The above remarks raise hope, that a similar description holds true on intermediate
rings. In fact, in the following Proposition we will show, that the above description
of the weak topology on AL extends to unramified, integral extensions. Its proof is a
generalization of [Sch17, Proposition 2.1.16 (i), p. 95–96].

Proposition 3.3.3.
Let B|BL be an unramified extension, A ⊆ B the integral closure of AL in B and set
A+ := A ∩W (Esep,+

L )L.
Then the family

ωmφ A
+ + πmL A, m ≥ 1

of A+-submodules of A forms a fundamental system of open neighbourhoods of 0 for
the weak topology on A.

Proof.
Since we have ωmφ A

+ ⊆ ωmφ W (OC[
p
)L and πmL A ⊆ πmLW (C[p)L for all m ≥ 1, we also

get
ωmφ A

+ + πmL A ⊆ (ωmφ W (OC[
p
)L + πmLW (C[p)L) ∩A

for all m ≥ 1, i.e. the topology on A generated by the family (ωmφ A
+ + πmL A)m is

finer then the topology induced from W (C[p)L.
To see that it is also coarser, let E|EL be the residue class field of A and E+ be the
integral closure of E+

L in E and consider the following families ofW (OC[
p
)L-submodules

of W (C[p)L:

Vn,m :=
{
(b0, b1, . . . ) ∈W (OC[

p
)L | b0, . . . , bm−1 ∈ ωnOC[

p

}
,

Un,m :=
{
(b0, b1, . . . ) ∈W (C[p)L | b0, . . . , bm−1 ∈ ωnOC[

p

}
.

These are introduced in [Sch17, Section 1.5, p. 64–68] to define the weak topology on
W (C[p)L. In particular, the Un,m give a fundamental system of open neighbourhoods
of 0 in W (C[p)L (loc. cit.) and the Vn,m give one of W (OC[

p
)L. Since ωφ is topologically

nilpotent (cf. [Sch17, Lemma 2.1.6, p. 87]) we can find for any k ∈ N an element
n ∈ N such that ωnφ ∈ Vk,m. But since Φ0(ωφ) = ω, i.e. ωφ = (ω, . . . ), the condition
ωnφ ∈ Vk,m implies n ≥ k. Therefore we can find an increasing sequence of natural
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numbers m ≤ l1 < · · · < lm such that

ω
q
li
L
φ ∈ Vqli−1+1

L ,m
for all 2 ≤ i ≤ m.

Since A+ only contains positive powers of ωφ, this then implies, that for all 2 ≤ i ≤ m
we have

ω
q
li
L
φ A+ ⊆ V

q
li−1+1

L ,m
.

We will now show that
U
qlmL ,m

∩A ⊆ ωmφ A+ + πmL A.

For this let fm ∈ UqlmL ,m
∩A. We then have

Φ0(fm) ∈ ωq
lm
L OC[

p
∩ E = ωq

lm
L E+.

Since by [Sch17, Lemma 3.1.3 (b), p. 112–113] the diagram

A //

pr
��

W (E)L

Φ0{{
E

commutes, we can find gm ∈ ω
qlmL
φ A+ and fm−1 ∈ A such that

fm = gm + πLfm−1.

Recall ωq
lm
L
φ A+ ⊆ V

q
lm−1+1

L ,m
from above and obtain

πLfm−1 = fm − gm ∈ (U
qlmL ,m

+ V
q
lm−1+1

L ,m
) ∩A = U

q
lm−1+1

L ,m
∩A.

Then [Sch17, Proposition 1.1.18 (i), p. 16–17] says that, if fm−1 = (b0, b1, . . . ) for
some bj ∈ C[p then we have πLfm−1 = (0, bqL0 , b

qL
1 , . . . ). This then immediately implies

fm−1 ∈ U
q
lm−1
L ,m

∩A. This means that we can do a decreasing induction for m ≥ i ≥ 1

and find for every such i elements gi ∈ ω
q
li
L
φ A+ and fi−1 ∈ A such that

fi = gi + πLfi−1.
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Putting all this together, we get

fm =
m∑
i=1

πm−i
L gm + πmL f0.

In particular we have
m∑
i=1

πm−i
L gm ∈ ω

q
l1
L
φ A+ ⊆ ωmφ A+.

Therefore we have fm ∈ ωmφ A+ + πmL A which was exactly the statement we wanted
to see to end the proof.

Corollary 3.3.4.
A fundamental system of open neighbourhoods of 0 for the weak topology on AK|L

(resp. Anr
L ) is given by the A+

K|L- (resp. Anr,+
L -) submodules

ωmφ A+
K|L + πmLAK|L, m ≥ 1, respectively

ωmφ Anr,+
L + πmLAnr

L , m ≥ 1.

Proof.
This is an application of Proposition 3.3.3.

Proposition 3.3.5.
The weak topology on AK|L coincides with the weak topology of AK|L considered as
AL-module.

Proof.
If (ui)i is an AL-basis of AK|L, then (ωkφui)i is so for all k ≥ 0. Therefore AK|L has
an AL-basis consisting of elements of A+

K|L. The claim then follows from the above
Corollary 3.3.4 together with Corollary 3.3.1.

Proposition 3.3.6.
The canonical inclusion AK|L ↪→ A is a topological embedding. Furthermore, for every
n ∈ N the induced inclusion AK|L/π

n
LAK|L ↪→ A/πnLA is a topological embedding as

well.

Proof.
Because of

AK|L ∩A = AK|L ∩A ∩W (OC[
p
)L = AK|L ∩W (OC[

p
)L
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the first part of the assertion follows from the definition of the weak topology. The
second then follows from the commutative diagram

AK|L

����

� � // A

����
AK|L/π

n
LAK|L

� � // A/πnLA.

Proposition 3.3.7.
The weak topology on A coincides with the topology of the projective limit lim←−nA

nr
L /π

n
LA

nr
L

where each factor carries the quotient topology of the weak topology on Anr
L .

Moreover, a fundamental system of open neighbourhoods of 0 for the weak topology on
A is given by the sets

ωmφ Anr,+
L + πmLA, m ≥ 1.

Note that, by definition, A+ = Anr,+
L .

Proof.
For this proof, we will refer to the latter topology of the Proposition’s formulation as
the projective limit topology.
As in the above Proposition 3.3.6 the inclusion Anr

L ↪→ A clearly is a topological
embedding and since the diagram

Anr
L

����

� � // A

����
Anr
L /π

n
LA

nr
L A/πnLA.

for every n ∈ N is commutative, the quotient topology on Anr
L /π

n
LA

nr
L with respect

to the weak topology on Anr
L coincides with its quotient topology with respect to the

weak topology on A. Therefore the canonical projections

A = lim←−nA
nr
L /π

n
LA

nr
L

// // Anr
L /π

n
LA

nr
L

are continuous for the weak topology on A. This means that the weak topology of A
is finer than its projective limit topology.
From Proposition 3.3.3 we deduce that a fundamental system of open neighbourhoods
of 0 for the quotient topology of the weak topology on Anr

L /π
n
LA

nr
L is given by the
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sets
ωmφ Anr,+

L + πnLA
nr
L , m ≥ 1.

Then the sets
ωmφ Anr,+

L + πnLA, m, n ≥ 1

form a fundamental system of open neighbourhoods of 0 for the projective limit
topology on A. But clearly the sets with m = n define the same topology. Since the
weak topology is defined by the sets(

ωmφ W (OC[
p
)L + πmLW (C[p)L

)
∩A, m ≥ 1

(cf. Remark 3.3.2) and we clearly have

ωmφ Anr,+
L + πmLA ⊆

(
ωmφ W (OC[

p
)L + πmLW (C[p)L

)
∩A

for all m ≥ 1, the projective limit topology is finer than the weak topology.

Lemma 3.3.8.
Let k be a finite field and E|k((X)) be a finite, separable extension. Then there exists
a finite extension κ|k such that E ∼= κ((Y )).

Proof.
This is [Kup15, Lemma 1.38, p. 20].

Lemma 3.3.9.
Let k′|k be an extension of finite fields and k′((Y ))|k((X)) be a finite, separable
extension. Then the Y -adic and the X-adic topologies on k′((Y )) coincide.
In particular, there exists a l ∈ N such that for all n ∈ N it holds

X lnk′JY K ⊆ Y lnk′JY K ⊆ Xnk′JY K.

Proof.
Since kJXK is a discrete valuation ring with respect to its X-adic topology and k′JY K
is so as well with respect to its Y -adic topology, we deduce from usual ramification
theory, that there exists a l ∈ N such that

Y lk′JY K = Xk′JY K.

Since Y k′JY K is the maximal ideal of k′JY K it clearly is Xk′JY K ⊆ Y k′JY K and
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therefore we get for all n ∈ N

X lnk′JY K ⊆ Y lnk′JY K ⊆ Xnk′JY K.

Lemma 3.3.10.
Let E|EL be a finite and separable extension. Then the subspace topology on E induced
from the topology of C[p coincides with the extension from the ω-adic topology on EL.
Note that the latter topology is the ω-adic topology on E, due to the above Lemma
3.3.9.
In particular, the integral closure E+ of E+

L inside E consists of exactly those elements
of E whose absolute value in C[p is less or equal to 1.

Proof.
We denote the absolute value induced from C[p by | · |[ as in [Sch17, Lemma 1.4.6,
p. 44–45] and we use the identifications E ∼= κ((Y )) as well as EL ∼= kL((X)) (cf.
Lemma 3.3.8), where κ|kL is a finite extension.
The maximal unramified intermediate field of κ((Y ))|kL((X)) is κ((X)) and therefore
it exists a l ∈ N and gi ∈ κJXK for 0 ≤ i < l with X | gi and X2 - g0 such that (cf.
[Ser79, Chapter I, §6, Proposition 17, p. 19])

l−1∑
i=0

giY
i + Y l = 0.

Since |X|[ < 1 and |x|[ = 1 for x ∈ κ (in particular, every nonzero element coming
from a finite field has absolute value 1 in OC[

p
with respect to | · |[) we have |gi|[ ≤ 1

for all 0 ≤ i < l and we can deduce

|Y l|[ ≤ max
0≤i<l

|gi|[|Y i|[ ≤ max
0≤i<l

|Y i|[

and therefore |Y |[ ≤ 1. Furthermore, since we have Y lκJY K = XκJY K we can find a
g ∈ κJY K such that Y l = Xg and since |Y |[ ≤ 1 we then deduce |g|[ ≤ 1 and

|Y l|[ = |X|[|g|[ ≤ |X|[ < 1.

But this then immediately implies

|Y |[ < 1.
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Since X | g0 and X2 - g0 it is |g0|[ = |X|[ and because of X | gi for all 0 ≤ i < l we
also have

|g0|[ ≥ |gi|[ for all 0 < i < l.

Since |Y |[ < 1 we deduce from the above

|g0|[ > |gi|[|Y i|[ for all 0 < i < l

and therefore
|Y l|[ = |g0|[ = |X|[

because | · |[ is a nonarchimedean absolute value.
Denote by | · | the extension of the absolute value of EL (which corresponds with
the ω-adic topology) to E. Then we deduce from [Ser79, Chapter 2, §2, Corollary 4,
p. 29] that

|Y l| = |Nor(Y )|[,

where Nor denotes the norm of the extension κ((Y ))|κ((X)). From the polynomial
we started with we then can deduce Nor(Y ) = g0 and therefore

|Y l| = |g0|[ = |X|[.

This means that | · | and | · |[ coincide on E.
From the identification above we deduce E+ = κJY K. But since |Y |[ < 1, these are
exactly the elements of E whose absolute value is less or equal to 1.

Corollary 3.3.11.
EK|L is, with respect to the topology induced from C[p, a complete, nonarchimedean
discretely valued field of characteristic p with residue class field kK and ring of integers
E+
K|L.

Lemma 3.3.12.
Let X be a topological space and (Yn)n a family of subsets of X with Yn ⊆ Yn+1.
Set Y := lim−→n

Yn =
⋃
n Yn. Then, the subset topology on Y coincides with the final

topology of the inductive limit with respect to the subset topologies on the Yn.

Proof.
First we show that the canonical injections fn : Yn ↪→ Y are continuous for the subset
topology on Y . This then implies that the subspace topology on Y is coarser than
the projective limit topology since the latter is the finest such that all injections fn
are continuous (cf. [Bou89a, Chapter I, §2.4, Proposition 6, p. 32]).
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Let U ⊆ Y be open and V ⊆ X open such that U = V ∩ Y . Then it is

f−1
n (U) = U ∩ Yn = V ∩ V ∩ Yn = V ∩ Yn,

i.e. f−1
n (U) ⊆ Yn is open.

It is left to show, that the subspace topology is finer then the direct limit topology.
For this, let U ⊆ Y be open with respect to the direct limit topology, i.e. it
is U =

⋃
n f

−1
n (U), where for every n ∈ N it exists an open Vn ⊆ X such that

f−1(U) = Vn ∩ Yn. We set V :=
⋃
Vn and claim U = V ∩ Y . To see this, let u ∈ U .

Then it exists n ∈ N such that u ∈ Vn ∩ Yn and in particular u ∈ V . Conversely let
u ∈ V ∩Y . Then, by definition, there exist n1, n2 ∈ N such that u ∈ Vn1 and u ∈ Yn2 .
For n := max{n1, n2} we then deduce u ∈ Vn ∩ Yn and therefore u ∈ U .

Proposition 3.3.13.
The integral closure Esep,+

L of E+
L inside Esep

L consists of exactly those elements with
absolute value | · |[ less or equal to 1.
Furthermore, the topology on Esep

L induced from C[p coincides with the final topology
with respect to the colimit

Esep
L =

⋃
E|EL
fin, sep

E

where each E carries the topology induced from C[p.
In particular, the Esep,+

L -submodules

ωnEsep,+
L

form a fundamental system of open neighbourhoods of 0 for this topology on Esep
L .

Proof.
This now is an immediate consequence of Lemma 3.3.10 and Lemma 3.3.12.

3.4 Structure of Coefficient Rings (unramified case)

For this section, let K|L be an unramified extension. Then it is a Galois extension
and its Galois group is isomorphic to the Galois group of the respective residue class
fields. It therefore is cyclic and generated by the lift of the qL-Frobenius x 7→ xqL .
We will denote this lift by σK|L and call it Frobenius on K. Recall also from Remark
3.1.2 that the groups ΓL and ΓK are isomorphic and for every n ∈ N the groups
ΓLn|L and ΓKn are isomorphic as well.
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Remark 3.4.1.
We have (HL : HK) = [K : L].

Proof.
Since ΓL ∼= ΓK (cf. Remark 3.1.2) we have (HL : HK) = [K∞ : L∞] = [K : L].

Lemma 3.4.2.
We have kKEL = EK|L.

Proof.
Since kK is fixed by HK it clearly is kKEL ⊆ EK|L. Since K|L is unramified we have
[K : L] = [kK : kL] and therefore

[kKEL : EL] = [kK : kK ∩EL] = [kK : kL] = [K : L] = (HL : HK) = [EK|L : EL].

Lemma 3.4.3.
We have AK|L = OK ⊗OL

AL and BK|L = KBL.

Proof.
Since K|L is unramified OK ⊗OL

AL is unramified over AL and since K is fixed
by HK we deduce OK ⊗OL

AL ⊆ AK|L. Since both are free AL-modules of rank
[K : L] = (HL : HK) they coincide.
The statement for the fields of fractions then follows immediately.

In order to understand how the operations of ΓK and the Frobenius look on AK|L

respectively BK|L it now suffices to understand the corresponding operations on OK

respectively K. Note, that since K|L is unramified, we clearly have W (kK)L = OK .

Lemma 3.4.4.
Let Fr denote the (restriction of the) qL-Frobenius on kK . Then the automorphism
σK|L on OK coincides with the restriction of W (Fr)L.

Proof.
Due to the functoriality of the Witt construction, W (Fr)L is an automorphism on
OK which fixes OL, it induces also an automorphism on K which fixes L and it’s
reduction modulo πL is Fr. The first observation says, that the restriction of W (Fr)L

is an element of Gal(K|L) and since Gal(K|L) and Gal(kK |kL) are isomorphic via
σ 7→ σ mod πL, the second observation says that the restriction of W (Fr)L is a lift
of Fr. Since this lift is unique we get the desired equality W (Fr)L = σK|L on K

respectively OK .
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Before we give explicit descriptions of the operations on AK|L we want to fix some
notation.

Definition 3.4.5.
Let ϑ be an OL-linear endomorphism of OK and f ∈ AK|L we denote by fϑ the
element, on which ϑ is applied to the coefficients of f , i.e. if f(ωφ) =

∑
aiω

i
φ then

fϑ(ωφ) =
∑
i∈N0

ϑ(ai)ω
i
φ.

Proposition 3.4.6.
Let f = f(ωφ) =

∑
aiω

i
φ ∈ AK|L and γ ∈ ΓK . We then have

γ · f =
∑
i∈Z

ai[χLT(γ)]φ(ω
i
φ).

For the Frobenius ϕK|L we have

ϕK|L(f) =
∑
i∈Z

σK|L(ai)[πL]φ(ω
i
φ).

Together with the above Definition 3.4.5, we then have the description

ϕK|L(f(ωφ)) = fσK|L(ϕK|L(ωφ)).

Proof.
This is an immediate consequence of Remark 3.1.2, Lemma 3.4.3 and Lemma 3.4.4.

3.5 Structure of Coefficient Rings (general case)

Lemma 3.5.1.
Let k be a finite field of cardinality q and E|k((X)) be a finite, separable extension.
Then it holds

E =

q−1⊕
i=0

XiEq.

Proof. This is [Kup15, Lemma 1.39, p. 21].

Proposition 3.5.2.

A =

qL−1⊕
i=0

Fr(A)ωiφ.

Proof. This is [Kup15, Proposition 1.41, p. 21–22].
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Corollary 3.5.3.

AK|L =

qL−1⊕
i=0

ϕK|L(AK|L)ω
i
φ.

Proposition 3.5.4.
Let B|BL be a finite, unramified extension and A ⊆ B be the integral closure of AL.
Then there exists a finite, unramified extension E|L and an element νφ ∈W (Esep

L )L

with νjφ = ωφ for some j > 0 such that

A ∼= lim←−
n

OE/π
n
LOE((νφ)).

Proof.
Let κ be the residue class field of A and recall that the residue class field of AL is
EL = kL((ω)). Since B|BL is unramified, we then have

[B : BL] = [κ : kL((ω))].

Since κ|kL((ω)) is finite and separable (B|BL is unramified), we deduce from Lemma
3.3.8 that κ ∼= k((ν)) for some finite extension k|kL and ν ∈ Esep

L with νj = ω for
some j > 0. But then there exists a unique finite and unramified extension E|L
with kE = k. In particular, we have j[E : L] = [B : BL]. Furthermore, since BL

is a complete discrete valuation field, and B|BL is a finite extension, the henselian
lemma in the sense of [Neu07, II §4, (4.6) Henselsches Lemma, p. 135–136] holds true
and therefore we can find a νφ ∈ B ⊆ W (Esep

L )L which is a root of the polynomial
Xj − ωφ and for which we have

νφ mod πL = ν.

Since Xj − ωφ is irreducible over BL and E|L is unramified, we deduce

[EBL(νφ) : BL] = [EBL(νφ) : BL(νφ)] · [BL(νφ) : BL]

= [E : E ∩BL(νφ)] · j

= [E : L] · j

and therefore
B = EBL(νφ).
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In particular, we have

B =

{∑
i∈Z

aiν
i
φ

∣∣∣∣ ai ∈ E, lim
i→−∞

ai = 0 and it exists n ∈ N

such that πnLai ∈ OE for all i ∈ Z

}

Then A consists of those elements of B with πL-adic absolute value ≤ 1. Since this ab-
solute value is nonarchimedean, these are exactly those elements∑

i∈Z aiν
i
φ ∈ B with ai ∈ OE for all i ∈ Z, i.e.

A ∼= lim←−
n

OE/π
n
LOE((νφ)).

3.6 (ϕK|L,ΓK)-modules and Galois representations

Before we give the definition of (ϕK|L,ΓK)-modules, we want to recall some useful
tools. If not otherwise stated, all continuity statements refer to the corresponding
weak topology.

Definition 3.6.1.
Let M be an AK|L-module. We regard M as a left-AK|L-module and AK|L itself
as a right-AK|L-module via ϕK|L. For the tensor product in this situation we write
AK|L ϕK|L⊗AK|LM , which is per definition an abelian group, but since AK|L is also
a left- AK|L-module (with the standard multiplication) this tensor product is also a
(left)-AK|L-module.

Remark 3.6.2.
As a set AK|L ϕK|L⊗AK|LM is equal to the standard tensor product AK|L ⊗AK|L M ,
but since we regard AK|L as right-AK|L-module via ϕK|L, we have the relation

x⊗ am = xϕK|L(a)⊗m,

for all x, a ∈ AK|L and m ∈M . Note also that we have

a(x⊗m) = (ax)⊗m

for all a, x ∈ AK|L and m ∈M .
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Lemma 3.6.3.
The functor

Mod(AK|L)→ Mod(AK|L),M 7→ AK|L ϕK|L⊗AK|LM

is exact.

Proof.
Since AK|L is a discrete valuation ring and AK|L is free as (right-)AK|L-module via
ϕK|L (cf. Proposition 3.5.3), this is [Bou61, Proposition 3, p. 29].

Definition 3.6.4.
Let M be a finitely generated AK|L-module equipped with a ϕK|L-linear endomor-
phism ϕM . Then ϕlin

M denotes the homomorphism

ϕlin
M : AK|L ϕK|L⊗AK|LM

//M

f ⊗m � // fϕM (m).

Definition 3.6.5.
A finitely generated AK|L-module M is called (ϕK|L,ΓK)-module if it is equipped
with a ϕK|L-linear endomorphism ϕM and a continuous, semilinear action from ΓK ,
which commutes with the endomorphism ϕM .
A (ϕK|L,ΓK)-module is called étale if the homomorphism ϕlin

M is bijective.
A morphism of (ϕK|L,ΓK)-modules f : M → N is an AK|L-module homomorphism,
which respects the actions from ΓK and the endomorphisms ϕM and ϕN .
We will denote the category of étale (ϕK|L,ΓK)-modules by Modét

ϕ,Γ(AK|L).

Definition 3.6.6.
We denote the category of finitely generated OL-modules together with a continuous
OL-linear action from GK , the so called GK-representations of OL, by Rep

(fg)
OL

(GK).

We now will define two functors between Modét
ϕ,Γ(AK|L) and Rep

(fg)
OL

(GK) (one
in each direction) from which we then in the following section will prove that they
define an equivalence of these categories.

Definition 3.6.7.
Let M ∈Modét

ϕ,Γ(AK|L). We then define

VK|L(M) := (A⊗AK|L M)Fr⊗ϕM=1.
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Remark 3.6.8.
At the moment, VK|L gives a functor from Modét

ϕ,Γ(AK|L) to the category of OL-
modules with a group action from GK . If we want to see that it is a functor with
image in Rep

(fg)
OL

(GK) we have to show that for M ∈Modét
ϕ,Γ(AK|L) it holds:

1. VK|L(M) is finitely generated as OL-module.

2. The GK-action is continuous.

Before we go into the prove of this, we want to define the functor in the opposite
direction and explain what we have to prove in order to see that it is well defined.

Definition 3.6.9.
Let V ∈ Rep

(fg)
OL

(GK). We then define

MK|L(V ) := (A⊗OL
V )HK .

Remark 3.6.10.
As before, at the moment, MK|L defines a functor from Rep

(fg)
OL

(GK) to the category
of AK|L-modules which have a group action from ΓK and an endomorphism induced
from Fr which commutes with the action from ΓK . In order to see that MK|L has
image in Modét

ϕ,Γ(AK|L) we have to show that for V ∈ Rep
(fg)
OL

(GK) it holds:

1. MK|L(V ) is finitely generated as AK|L-module.

2. The endomorphism induced from Fr is continuous.

3. The ΓK-action is continuous.

4. ϕlin
MK|L(V ) is an isomorphism.

The proof, that the categories Modét
ϕ,Γ(AK|L) and Rep

(fg)
OL

(GK) are equivalent,
will be the content of the next three sections.
In the first section, we give the general idea of the proof and explain what we exactly
have to prove. In the following section we will give a proof in characteristic p and
in the last section, we deduce from this the general equivalence. Our exposition in
these sections follows [Sch17, Chapter 3, p. 110–135] and explains how the results
from there transform to our situation.
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3.7 The strategy for the equivalence

Rep
(fg)
OL

(GK) ∼= Modét
ϕ,Γ(AK|L)

In this section we want to prove as many of the conditions of Remark 3.6.8 and
Remark 3.6.10 as possible in the general case. For this we introduce two comparison
homomorphisms, which will give us some nice results if we can prove that they are
isomorphisms. The proof of the bijectivity will be the part of the following sections.
Additionally, they will lead us to the desired equivalence.

Lemma 3.7.1.
Let V ∈ Rep

(fg)
OL

(GK). Then

ϕlin
MK|L(V ) : AK|L ϕK|L⊗AK|LMK|L(V ) //MK|L(V ),

f ⊗m � // f ⊗ ϕMK|L(V )(m)

is an isomorphism.

Proof.
Because Corollary 3.5.3 and Lemma 3.6.3 say that AK|L has the same properties as
AL which are needed for [Sch17, Lemma 3.1.7, p. 116–117], the proof is the same as
the one of loc. cit.

Definition 3.7.2.
Let V ∈ Rep

(fg)
OL

(GK). We then define

adV : A⊗AK|L MK|L(V ) // A⊗OL
V

a⊗m � // am.

Remark 3.7.3.
For V ∈ Rep

(fg)
OL

(GK) the map adV is a homomorphism of A-modules, it is compatible
with the diagonal GK-actions on both sides and it satisfies

adV ◦ (Fr⊗ ϕMK|L(V )) = (Fr⊗ id) ◦ adV .

Definition 3.7.4.
Let M ∈Modét

ϕ,Γ(AK|L). We then define

adM : A⊗OL
VK|L(M) // A⊗AK|L M

a⊗ v � // av.
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Remark 3.7.5.
For M ∈ Modét

ϕ,Γ(AK|L) the map adM is a homomorphism of A-modules, it is
compatible with the diagonal GK-action on both sides and it satisfies

adM ◦ (Fr⊗ id) = (Fr⊗ ϕM ) ◦ adM

Lemma 3.7.6.
Let V ∈ Rep

(fg)
OL

(GK). Then the diagonal action from GK on A⊗OL
V is continuous

for the tensor product topology, where A carries its weak topology.

Proof.
This is literally the same as the proof of [Sch17, Lemma 3.1.10, p. 119–120].

Proposition 3.7.7.
Let V ∈ Rep

(fg)
OL

(GK) and assume that MK|L(V ) is finitely generated as AK|L-module
as well as adV is an isomorphism.
Then the induced ΓK-action on MK|L(V ) and the endomorphism ϕMK|L(V ) induced
from Fr are continuous for the weak topology and MK|L(V ) has the same elementary
divisors as V . This means, that if we have MK|L(V ) ∼= ⊕si=1AK|L/π

mi
L AK|L with

1 ≤ m1 ≤ · · · ≤ ms ≤ ∞ as AK|L-modules by the main theorem for finitely generated
modules over principal ideal domains (cf. [Bos09, Korollar 7, p. 80]), then we also
have V ∼= ⊕si=1OL/π

mi
L OL as OL-modules.

Proof.
Lemma 3.7.6 induces that

GK ×MK|L(V ) // GK ×A⊗OL
V // A⊗OL

V

is continuous and since this map has image in MK|L(V ) and reduces to the action
of ΓK , since MK|L(V ) is, by definition, HK-invariant, Lemma 3.2.5 says that the
ΓK-action on MK|L(V ) is continuous for the topology induced from the weak topology
of A⊗OL

V . Similarly, since

MK|L(V ) �
� // A⊗OL

V
Fr⊗idV// A⊗OL

V

is continuous with image in MK|L(V ), Lemma 3.2.5 says that ϕMK|L(V ) is continuous
on MK|L(V ) for the topology induced from the weak topology of A ⊗OL

V . One
checks that this topology coincides with the weak topology on MK|L(V ) and the
statement on the elementary divisors as in [Sch17, Proposition 3.1.12, p. 122] where
we make us of Proposition 3.3.6 instead of [Sch17, Lemma 3.1.8, p. 118–119].
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Remark 3.7.8.
The above Proposition 3.7.7 together with Lemma 3.7.1 says that in order to check the
conditions from Remark 3.6.10 it suffices to check that for V ∈ Rep

(fg)
OL

(GK) it holds:

1. MK|L(V ) is finitely generated as AK|L-module.

2. adV is bijective.

Lemma 3.7.9.
Let M ∈ Modét

ϕ,Γ(AK|L). Then the diagonal action from GK on A ⊗AK|L M is
continuous for the tensor product topology of the weak topologies on both sides.

Proof.
Since GK acts continuously on both, A and M , this is exactly the same as [Sch17,
Lemma 3.1.11, p. 120–122] (which makes only use of these properties).

Proposition 3.7.10.
Let M ∈Modét

ϕ,Γ(AK|L) and assume that VK|L(M) is finitely generated over OL as
well as adM is an isomorphism.
Then the diagonal action from GK on VK|L(M) is continuous for the πL-adic topology
and VK|L(M) has the same elementary divisors as M . This is to be understood is in
the above Proposition 3.7.7:
If VK|L(M) ∼= ⊕si=1OL/π

mi
L OL with 1 ≤ m1 ≤ · · · ≤ ms ≤ ∞ as OL-modules, then

M ∼= ⊕si=1AK|L/π
mi
L AK|L as AK|L-modules.

Proof.
Lemma 3.7.9 induces that

GK × VK|L(M) // GK × (A⊗AK|L M) // A⊗AK|L M

is continuous and since this map has image in VK|L(M), Lemma 3.2.5 says that the
GK-action on VK|L(M) is continuous for the topology on VK|L(M) which is induced
from the weak topology on A ⊗AK|L M . One checks that this topology coincides
with the weak topology and the statement on the elementary divisors as in [Sch17,
Proposition 3.1.13, p. 122–123].

Remark 3.7.11.
The above Proposition 3.7.10 says that in order to check the conditions from Remark
3.6.8 it suffices to check that for M ∈Modét

ϕ,Γ(AK|L) it holds:

1. VK|L(M) is finitely generated as OL-module.

2. adM is bijective.
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3.8 The equivalence Rep
(fg)
kL

(GK) ∼= Modét
ϕ,Γ(EK|L)

In this section, we want to explain, why the categories in question are equivalent if
the corresponding objects are annihilated by πL. This is nearly similar to [Sch17,
Section 3.2, p. 123–129] since the hard facts proved there are in such a generality,
that they also cover our situation. Nevertheless, we will write down the statements
in the relative situation, we have chosen.

Remark 3.8.1.
If M ∈Modét

ϕ,Γ(AK|L) is annihilated by πL, then M is clearly a finite dimensional
EK|L-vector space and its weak topology coincides with the natural topology as EK|L-
vector space. We denote the corresponding category by Modét

ϕ,Γ(EK|L). For the
functor VK|L we then obtain

VK|L(M) =
(
Esep
L ⊗EK|L M

)Fr⊗ϕM=1
.

Analogous, if V ∈ Rep
(fg)
OL

(GK) is annihilated by πL, then V is a finite dimensional
kL-vector space and its GK-action is continuous for the discrete topology. The
corresponding category will be denoted by Rep

(fg)
kL

(GK). For the functor MK|L we
then obtain

MK|L(V ) =
(
Esep
L ⊗kL V

)HK .

Lemma 3.8.2.
Let V ∈ Rep

(fg)
kL

(GK) and let v1, . . . , vk be a kL-basis of V . Then there exists a
normal open subgroup N / GK such that σ(vi) = vi for all σ ∈ N and 1 ≤ i ≤ k.

Proof.
For 1 ≤ i ≤ k set

Ni := ker(GK → V, σ 7→ σ(vi)− vi).

Since the GK-action on V is continuous and V carries the discrete topology, each Ni

is open and normal in GK . Then take N := ∩iNi

The following Proposition 3.8.3 is exactly [Sch17, Proposition 3.2.1, p. 123–124],
where the above Lemma 3.8.2 explains one small step in detail.

Proposition 3.8.3.
Let V ∈ Rep

(fg)
kL

(GK). Then it holds:

1. The Esep
L -vector space Esep

L ⊗kL V has a basis consisting of elements, which are
fixed by HK .
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2. MK|L(V ) is a finitely generated EK|L-vector space.

3. adV is bijective.

Proof.
Although this is, as stated before, exactly [Sch17, Proposition 3.2.1, p. 123–124], we
want to state the (very short) proves of 2. and 3. For this, let v1, . . . , vk be an
Esep
L -basis of Esep

L ⊗kL V which is fixed by HK .

2. MK|L(V ) =
(
Esep
L ⊗kL V

)HK

=
(
Esep
L v1 + · · ·+Esep

L vk
)HK

=
(
Esep
L

)HK v1 + · · ·+
(
Esep
L

)HK vk

= EK|Lv1 + · · ·+EK|Lvk.

3. Esep
L ⊗EK|L MK|L(V )

1
= Esep

L ⊗EK|L

(
EK|Lv1 + · · ·+EK|Lvk

)
= Esep

L v1 + · · ·+Esep
L vk

= Esep
L ⊗kL V.

Proposition 3.8.4.
Let M ∈Modét

ϕ,Γ(EK|L). Then VK|L(M) is a finite dimensional kL-vector space and
adM is bijective.

Proof.
This is [Sch17, Proposition 3.2.4, p. 126–128] with F = Esep

L , W = Esep
L ⊗EK|L M and

f = Fr⊗ ϕM .

Theorem 3.8.5.
The categories Rep

(fg)
kL

(GK) and Modét
ϕ,Γ(EK|L) are equivalent. The equivalence is

given by the quasi invers functors

MK|L : Rep
(fg)
kL

(GK) //Modét
ϕ,Γ(EK|L)

V � //
(
Esep
L ⊗kL V

)HK

and
VK|L : Modét

ϕ,Γ(EK|L) // Rep
(fg)
kL

(GK)

M � //
(
Esep
L ⊗EK|L M

)Fr⊗ϕM=1
.
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Proof.
This is [Sch17, Corollary 3.2.3, p. 126], [Sch17, Corollary 3.2.6, p. 129] and [Sch17,
Corollary 3.2.7, p. 129]. For the completeness of this section, we want to calculate
the quasi inversion of MK|L and VK|L.
Let M ∈Modét

ϕ,Γ(EK|L). Then:

MK|L(VK|L(M)) =
(
Esep
L ⊗kL VK|L(M)

)HK

adM∼=
(
Esep
L ⊗EK|L M

)HK

=
(
Esep
L

)HK ⊗EK|L M

= EK|L ⊗EK|L M =M.

Let V ∈ Rep
(fg)
kL

(GK). Then:

VK|L(MK|L(V )) =
(
Esep
L ⊗EK|L MK|L(V )

)Fr⊗ϕMK|L(V )=1

adV∼=
(
Esep
L ⊗kL V

)Fr⊗idV =1

=
(
Esep
L

)Fr=1 ⊗kL V

= kL ⊗kL V = V.

3.9 The equivalence Rep
(fg)
OL

(GK) ∼= Modét
ϕ,Γ(AK|L)

Since the new key inputs in [Sch17, section 3.3, p. 129–135] (namely [Sch17, Remark
3.3.1, p. 129] and [Sch17, Remark 3.3.5, p. 133]) are formulated in a generality in which
also our situation fits, the proof of the general equivalence is completely analogous to
[Sch17, section 3.3, p. 129–135]. Therefore, we only want to state it here.

Theorem 3.9.1.
The categories Rep

(fg)
OL

(GK) and Modét
ϕ,Γ(AK|L) are equivalent to each other. The

equivalence is given by the quasi invers functors

MK|L : Rep
(fg)
OL

(GK) //Modét
ϕ,Γ(AK|L)

V � // (A⊗OL
V )HK
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and
VK|L : Modét

ϕ,Γ(AK|L) // Rep
(fg)
OL

(GK)

M � //
(
A⊗AK|L M

)Fr⊗ϕM=1
.



Chapter 4

Iwasawa Cohomology and an
explicit Reciprocity Law

In this chapter we will generalize [SV15, Theorem 6.2, p. 32] to finite, unramified
extensions. So, we keep the notations from the previous chapters but we assume
additionally that K|L is an unramified extension and let dK|L := [K : L] denote
the degree of the extension. This assumption leads to some simplifications of the
involved structures, which we will discuss before we turn to the results of [SV15].

4.1 Coleman Power Series

Now we head towards [SV15]. First we want to recall some notations from there. For
this, we are very close to [SV15, Notation, p. 3] and we keep most of the notations
from there to avoid confusion and to simplify comparisons. As at their beginning, we
make use of [Col79] and therefore work first with power series rings, rings of formal
Laurent series and completions of these rings. Due to Lemma 3.4.3 it makes sense
to work with the same coordinate over both, L and K which we will denote by Z
as in [SV15, p. 3]. Recall from Chapter 3 that we fixed a Lubin-Tate power series
φ ∈ OLJZK and an associated Lubin-Tate formal group Gφ ∈ OLJX,Y K. As in [SV15,
p. 3] we write X +Gφ

Y instead of Gφ(X,Y ). In our opinion, this leads to a clearer
presentation.

Remark 4.1.1.
Since Gφ ≡ X + Y mod deg 2, the power series ∂(Gφ(X,Y ))

∂Y

∣∣
(X,Y )=(0,Z)

has no constant
term and therefore has an inverse in OLJZK.
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Definition 4.1.2.
Let gLT ∈ OLJZK denote the inverse of ∂(Gφ(X,Y ))

∂Y

∣∣
(X,Y )=(0,Z)

(cf. Remark 4.1.1).
Let furthermore logLT(Z) = Z + · · · ∈ LJZK denote the unique formal power series
whose formal derivative is gLT.

Remark 4.1.3.
gLT(Z)dZ is the unique invariant differential form on Gφ.
logLT is the logarithm of Gφ . In particular, we have gLT(Z)dZ = d logLT(Z).

Proof.
The first statement is [Haz78, §5.8], the second [Lan78, p. 8.6].

Definition 4.1.4.
By ∂inv we denote the invariant derivation corresponding to d logLT, i.e. for f ∈ OLJZK
we have

df = ∂inv(f)d logLT .

Remark 4.1.5.
For f ∈ OLJZK we have

∂inv(f) =
f ′

gLT
.

Proof.
We have (cf. [SV15, p. 3])

f ′dZ = df = ∂inv(f)d logLT = ∂inv(f)gLTdZ

which immediately implies the claim.

Remark 4.1.6.
∂inv clearly is OL-linear and therefore it is continuous for the πL-adic topology on
OLJZK.

Remark 4.1.7.
By the same formula as above (cf. Remark 4.1.5), we expand ∂inv to OKJZK, i.e. if
f ∈ OKJZK we set

∂inv(f) =
f ′

gLT
.

Then clearly ∂inv is OK-linear and therefore it is continuous for the πL-adic topology
on OKJZK.
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Remark 4.1.8.
For a ∈ OL we have

logLT([a](Z)) = a · logLT(Z)

a · gLT(Z) = gLT([a](Z)) · [a]′(Z).

Proof.
This is [Lan78, 8.6, Lemma 2].

As before (cf. Definition 3.4.5), if ϑ is an OL-linear endomorphism of OK and
f(Z) ∈ OKJZK we denote by fϑ(Z) the power series, on which ϑ is applied to its
coefficients, i.e. if f(Z) =

∑
aiZ

i then

fϑ(Z) =
∑
i∈N0

ϑ(ai)Z
i.

Recall that on OLJZK we have the Frobenius endomorphism (cf. [SV15, p. 3], [Col79,
p. 97], or here)

ϕL : OLJZK→ OLJZK, f(Z) 7→ f([πL]φ(Z)).

Together with Lemma 3.4.4 the corresponding Frobenius endomorphism on OKJZK
then is

ϕK|L : OKJZK→ OKJZK, f(Z) 7→ fσK|L([πL]φ(Z)).

Remark 4.1.9.
This endomorphism ϕK|L on OKJZK is a bit different to the one in [Col79, p. 97]
although Coleman also works with a finite unramified extension over his fixed base
field (in contrast to [SV15, p. 3]). The reason of this difference is, that the above
endomorphism translates to the endomorphism on the coefficient ring of Lubin-Tate
(ϕK|L,ΓK)-modules (cf. Lemma 3.4.4) in which we are interested later on. We now
have to check, that the results of [Col79] translates to our situation.
We will also make use of the endomorphism defined by Coleman and in order to
keep the notation from [SV15], we will denote by ϕL the following endomorphism of
OKJZK:

ϕL : OKJZK→ OKJZK, f(Z) 7→ f([πL]φ(Z)).

Note that at [SV15, p. 3] ϕL is defined on OLJZK, but [Col79, p. 97] defines it in this
way. So, our ϕL induces the ϕL of [SV15] by restriction.

We now want to characterize the image of ϕK|L. First, we recall the description of
the image of ϕL.
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Lemma 4.1.10.
It is

im(ϕL) = {f ∈ OKJZK| f(Z) = f(a+Gφ
Z) for all a ∈ Gφ[πL]}.

Proof.
See [Col79, Lemma 3, p. 97].

Remark 4.1.11.
Let ϑ ∈ Gal(K|L) and f ∈ OKJZK

1. Because [πL]φ(Z) ∈ OLJZK we have [πL]φ(Z) = [πL]
ϑ
φ(Z) and therefore

(fϑ ◦ [πL]φ)(Z) = (fϑ ◦ [πL]ϑφ)(Z) = (f ◦ [πL]φ)ϑ(Z).

2. With this, we accomplish ϕK|L(f
ϑ) = (ϕK|L(f))

ϑ, since

ϕK|L(f
ϑ) = (fϑ)ϕK|L([πL]φ(Z)) = (fσK|L)ϑ([πL]φ(Z))

= (fσK|L([πL]φ(Z)))
ϑ = (ϕK|L(f))

ϑ,

where the second equality holds, because ϑ and σK|L are elements of Gal(K|L),
which is cyclic.

Corollary 4.1.12.
In particular, we have

ϕK|L = σK|L ◦ ϕL = ϕL ◦ σK|L.

Proof.
This is exactly the first statement of Remark 4.1.11.

Proposition 4.1.13.
We have

im(ϕK|L) = {f ∈ OKJZK| f(Z) = f(a+Gφ
Z) for all a ∈ Gφ[πL]}.

Proof.
Since σK|L is an isomorphism on OK and therefore also on OKJZK and because of

ϕK|L = σK|L ◦ ϕL

(cf. Corollary 4.1.12) this is an immediate consequence of Lemma 4.1.10.
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Coleman then continues in [Col79, Thm. 4, Cor. 5, p. 98], to prove the existence of
a unique OL-linear endomorphism ψ̃Col : OKJZK→ OKJZK such that for f ∈ OKJZK

(ϕL ◦ ψ̃Col)(f(Z)) =
∑

a∈Gφ[πL]

f(a+Gφ
Z)

and in [Col79, Thm. 11, p. 102] of a unique multiplicative map
Ñ : OKJZK→ OKJZK such that for f ∈ OKJZK

(ϕL ◦ Ñ)(f(Z)) =
∏

a∈Gφ[πL]

f(a+Gφ
Z).

The map Ñ is called norm operator.

Remark 4.1.14.
For all f ∈ OKJZK and ϑ ∈ Gal(K|L) we have

1. ψ̃Col(f
ϑ(Z)) = (ψ̃Col(f))

ϑ(Z).

2. Ñ(fϑ(Z)) = (Ñ(f))ϑ(Z).

Proof.
Because ϕL is injective, it suffices the check the equations after applying ϕL.

1. (ϕL ◦ ψ̃Col)(f
ϑ(Z)) =

∑
a∈Gφ[πL]

(fϑ)(a+Gφ
Z)

=
∑

a∈Gφ[πL]

(f)ϑ(a+Gφ
Z)

=

 ∑
a∈Gφ[πL]

f(a+Gφ
Z)

ϑ

=
(
(ϕL ◦ ψ̃Col)(f)

)ϑ
(Z)

= ϕL(ψ̃Col(f)
ϑ)(Z).

The third equality holds true since Gφ has coefficients in OL.
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2. (ϕL ◦ Ñ)(fϑ(Z)) =
∏

a∈Gφ[πL]

(fϑ)(a+Gφ
Z)

=
∏

a∈Gφ[πL]

(f)ϑ(a+Gφ
Z)

=

 ∏
a∈Gφ[πL]

f(a+Gφ
Z)

ϑ

=
(
(ϕL ◦ Ñ)(f)

)ϑ
(Z)

= ϕL(Ñ(f)ϑ)(Z).

As above, the third equality holds true since Gφ has coefficients in OL.

Remark 4.1.15.
Let f ∈ OKJZK. Then we have

(ϕK|L ◦ ψ̃Col)(f(Z)) =
∑

a∈Gφ[πL]

fσK|L(a+Gφ
Z)

and
(ϕK|L ◦ Ñ)(f(Z)) =

∏
a∈Gφ[πL]

fσK|L(a+Gφ
Z).

In order to imitate the formulae from [Col79, Theorem 4, p. 98] and [Col79, Theorem
11, p. 102] we make the following definitions.

Definition 4.1.16.

ψCol := σ−1
K|L ◦ ψ̃Col = ψ̃Col ◦ σ−1

K|L,

N := σ−1
K|L ◦ Ñ = Ñ ◦ σ−1

K|L.

Note that the second equality at both lines comes from Remark 4.1.14

Remark 4.1.17.
Let f ∈ OKJZK. Then we have

(ϕK|L ◦ ψCol)(f(Z)) =
∑

a∈Gφ[πL]

f(a+Gφ
Z)

and
(ϕK|L ◦N)(f(Z)) =

∏
a∈Gφ[πL]

f(a+Gφ
Z).
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Remark 4.1.18.
1. ψCol ◦ ϕK|L = qL.

2. ψCol([πL]φ · f) = ZψCol(f) for any f ∈ OKJZK.

3. N([πL]φ) = ZqL.

Proof.
Because ϕK|L is injective, it suffices the check the equations after applying of ϕK|L.

1.
(
ϕK|L ◦ ψCol ◦ ϕK|L

)
(f)(Z) =

∑
a∈Gφ[πL]

(
ϕK|L(f)

)
(a+Gφ

Z)

=
∑

a∈Gφ[πL]

(fσK|L)([πL]φ(a+Gφ
Z))

=
∑

a∈Gφ[πL]

(fσK|L)([πL]φ(Z))

= ϕK|L(qLf
σK|L)

2.
(
ϕK|L ◦ ψCol

)
([πL](Z) · f(Z)) =

∑
a∈Gφ[πL]

[πL]φ(a+Gφ
Z)f(a+Gφ

Z)

= [πL]φ(Z) ·
∑

a∈Gφ[πL]

f(a+Gφ
Z)

= ϕK|L(Z) ·
(
(ϕK|L ◦ ψCol)(f(Z))

)
= ϕK|L(Z · ψCol(f(Z))).

3.
(
ϕK|L ◦N

)
([πL]φ(Z)) =

∏
a∈Gφ[πL]

[πL]φ(a+Gφ
Z)

=
∏

a∈Gφ[πL]

[πL]φ(Z)

=
∏

a∈Gφ[πL]

ϕK|L(Z)

= ϕK|L(Z
qL).

Remark 4.1.19.
Recall that [πL]φ(Z) ∈ ZOLJZK. Therefore, for any f ∈ OKJZK[Z−1] we can find an
n(f) ∈ N0, such that [πL]

n(f)
φ · f ∈ OKJZK. Together with Remark 4.1.18 this allows

us to extend ψCol to an OL-linear endomorphism

ψCol : OK((Z)) −→ OK((Z))

f 7−→ Z−n(f)ψCol([πL]
n(f)
φ f)
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as well as to extend N to a multiplicative map

N : OK((Z)) −→ OK((Z))

f 7−→ Z−qLn(f)N([πL]
n(f)
φ · f).

Proof.
Let f ∈ OK((Z)). We want to give an argument that the above definition is
independent from the choice of n(f) as long as we have [πL]

n(f)
φ · f ∈ OKJZK. So, let

n,m ∈ N0 with n > m such that [πL]
m
φ · f ∈ OKJZK. Then Remark 4.1.18, 2. implies

Z−nψCol([πL]
n
φ · f) = Z−nψCol([πL]

n−m
φ · ([πL]mφ · f))

= Z−nZn−mψCol([πL]
m
φ · f)

= Z−mψCol([πL]
m
φ · f).

This is the well definition of ψCol. For N, Remark 4.1.18, 3. implies

Z−qLnN([πL]
n
φ · f) = Z−qLnN([πL]

n−m
φ )N([πL]

m
φ · f)

= Z−qLnZqL(n−m)N([πL]
m
φ · f)

= Z−qLmN([πL]
m
φ · f).

Now fix an OL-generator t0 = (t0,n)n of TGφ.

Theorem 4.1.20 (Coleman).
For any norm-coherent sequence u = (un)n ∈ lim←−K

×
n there exists a unique Laurent

series gu,t0 ∈ (OK((Z))
×)N=id such that σ−nK|L(gu,t0(t0,n)) = un for any n ≥ 1. This

defines a multiplicative isomorphism

lim←−K
×
n

∼=−−→ (OK((Z))×)N=id, u 7−→ gu,t0 .

Proof.
See [Col79, Thm. A, p. 92; Corollary 17, p. 105–106]. Note that Coleman uses Ñ and
therefore his condition Ñ = σK|L translates into our N = id, since Ñ = σK|L ◦N by
definition.

Remark 4.1.21.
1. The map (OK((Z))

×)N=id → kK((Z))
× given by reduction modulo πL is an



Chapter 4. Iwasawa Cohomology and an explicit Reciprocity Law
91

isomorphism. Hence

lim←−K
×
n

∼=−−→ kK((Z))×, u 7−→ gu,t0 mod πL

is an isomorphism of groups.

2. If t1 = c · t0 is a second OL-generator of TGφ, then gu,t1([c](Z)) = gu,t0(Z) for
any u ∈ lim←−K

×
n .

Proof.
1. See [Col79, Corollary 18, p. 106]. As in Theorem 4.1.20 note, that Coleman

uses Ñ, and therefore his condition Ñ = σK|L translates into N = id.

2. Let t1 = c · t0 be a second OL-generator of TGφ and u ∈ lim←−K
×
n . By definition

we have [c](t0,n) = t1,n for all n ≥ 1. It follows

gu,t0(t0,n) = σnK|L(un) = gu,t1(t1,n) = gu,t1([c](t0,n)).

So the uniqueness property of Theorem 4.1.20 implies gu,t0 = gu,t1 ◦ [c] as
claimed.

Definition 4.1.22.
As in [SV15, p. 5] we introduce the "logarithmic" homomorphism

∆LT : OKJZK× −→ OKJZK

f 7−→ ∂inv(f)

f
= g−1

LT

f ′

f
.

Its kernel is O×
K .

Remark 4.1.23.
∆LT is in fact a homomorphism. Let f, g ∈ OKJZK×. Then

∆LT(f · g) = g−1
LT

(fg)′

fg
= g−1

LT

f ′g + g′f

fg
= g−1

LT

(
f ′

f
+
g′

g

)
= ∆LT(f) + ∆LT(g).

Lemma 4.1.24.
On OKJZK we have the following identities:

1. ∆LT ◦ ϕK|L = πLϕK|L ◦∆LT.

2. ψCol ◦∆LT = πL∆LT ◦N.

3. ∆LT(f
σK|L) = (∆LT(f))

σK|L for all f ∈ OKJZK×.
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Proof.
1. That σ is an isomorphism of OK which fixes OL implies ϕK|L(gLT) = ϕL(gLT) and

(fσK|L)′ = (f ′)σ. Thereby the proof of of this statement is similar to the one of
[SV15, Lemma 2.4, p. 5].

2.
(
ϕK|L ◦ ψCol ◦∆LT

)
(f) =

∑
a∈Gφ[πL]

(∆LT(f))(a+Gφ
Z)

=
∑

a∈Gφ[πL]

1

gLT(a+Gφ
Z)

f ′(a+Gφ
Z)

f(a+Gφ
Z)

=
∑

a∈Gφ[πL]

1

gLT(a+Gφ
Z)

d
dZ f(a+Gφ

Z)

f(a+Gφ
Z)

1
d
dZ (a+Gφ

Z)

=
∑

a∈Gφ[πL]

1
d
dZ logLT(a+Gφ

Z)

d
dZ f(a+Gφ

Z)

f(a+Gφ
Z)

=
∑

a∈Gφ[πL]

∆LT(f(a+Gφ
Z))

= ∆LT

 ∏
a∈Gφ[πL]

f(a+Gφ
Z)


= ∆LT((ϕK|L ◦N)(f))

= πLϕK|L((∆LT ◦N)(f))

= ϕK|L(πL(∆LT ◦N)(f)).

3. As before, because σK|L fixes OL, it is g
σK|L
LT = gLT and (fσK|L)′ = (f ′)σ. So it

follows

∆LT(f
σK|L) = g−1

LT

(fσK|L)′

fσK|L
= g−1

LT

(f ′)σK|L

fσK|L
=

(
g−1
LT

f ′

f

)σK|L

= (∆LT(f))
σK|L .

Remark 4.1.25.
∆LT restricts to a homomorphism

∆LT :
(
OKJZK×

)N=id −→ OKJZKψCol=πL .

with kernel the roots of unityµqK−1 of order dividing qK − 1.

Proof.
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Let f ∈ (OKJZK×)N=id. Then Remark 4.1.24, 2. induces

ψCol(∆LT(f)) = πL∆LT(N(f))

= πL∆LT(f)

= πL(∆LT(f)),

i.e we get ψCol = πL on im(∆LT).
Since OKJZK has no zero divisors, it is ∆LT(f) = 0 if and only if f ′ = 0, i.e. if
and only of f ∈ OK . Therefore, the kernel of the above restriction are exactly these
elements of OK , on which N is the identity. So, in the following we compute ON=id

K .
Because of the injectivity of ϕK|L it is

N(x) = x

if and only if
ϕK|L(N(x)) = ϕK|L(x)

for all x ∈ O×
K and because of Remark 4.1.17 it is ϕK|L(N(x)) = xqL as TGφ[πL] has

qL elements. Since ϕK|L acts on O×
K as σK|L, it is N(x) = x if and only if

σK|L(x) = xqL .

Furthermore, since K|L is unramified of degree dK|L, the Galois automorphism σK|L

has degree dK|L and therefore we have σ
dK|L
K|L = idK . Thus, by dK|L-times multiplying

σK|L(x), the last equation implies

x = σ
dK|L
K|L (x) = x

(
q
dK|L
L

)
= xqK .

In fact, since σK|L sends a (qK − 1)-st root of unity to its qL-th power, the above
equation is equivalent to σK|L(x) = xqL . So, in conclusion, we have seen, that for
x ∈ O×

K we have N(x) = x if and only if x is a qK − 1-st root of unity, which ends
the proof.

Clearly by definition, ∆LT extends to the homomorphism

∆LT : OK((Z))× −→ OK((Z))

f 7−→ ∂inv(f)

f
= g−1

LT

f ′

f
.
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It’s kernel is O×
K again.

Lemma 4.1.26.
The identity ψCol ◦∆LT = πL∆LT ◦N holds true on OK((Z))×.

Proof.
The proof is similar to the one of [SV15, Lemma 2.5, p. 6–7] by replacing ϕL with
ϕK|L.

Remark 4.1.27.
As before (cf. Remark 4.1.25), ∆LT restricts to a homomorphism

∆LT :
(
OL((Z))

×)N=id −→ OL((Z))
ψCol=πL

with the same kernel µqK−1.

4.2 Differential Forms and Residue Pairings

As mentioned at the beginning of Section 4.1, due to Lemma 3.4.3, it makes sense
to work with the same variable over both, L and K. In order to still simplify
comparisons, we will continue working with the variable Z. Therefore, let now AL

be the completion of OLJZK[Z−1] with respect to its πL-adic topology (in Chapter
3 we used the variable X) and let similarly AK|L be the completion of OKJZK[Z−1]

with respect to its πL-adic topology. Let BL and BK|L be their respective fraction
fields. From the construction in Chapter 3 we then can deduce that AK|L identifies
with AK|L, as well as BL with BL and BK|L with BK|L. We will also denote the
Frobenii on BL and BK|L with ϕL and ϕK|L respectively.

Remark 4.2.1.
Since ∂inv is continuous (cf. Remark 4.1.7), it extends to a homomorphism of BK|L

and for f ∈ BK|L we still have

∂inv(f) =
f ′

gLTf
.

Recall from Corollary 3.5.3 that AK|L is free of degree qL as ϕK|L(AK|L)-module
with basis (1, Z, . . . , ZqL−1) and that trace maps of totally ramified extensions are
zero in the residue class field.
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Definition 4.2.2.
Let Tr denote the trace map of the finite extension BK|L|ϕK|L(BK|L). Then define

ψK|L :=
1

πL
ϕ−1
K|L ◦ Tr.

Remark 4.2.3.
For all f, g ∈ BK|L we have

ψK|L(ϕK|L(f)g) = fψK|L(g).

and we have
ψK|L ◦ ϕK|L =

qL
πL

id.

Proof.
Since ϕK|L is injective it is enough to prove the assertions after applying ϕK|L. Let
f, g ∈ BK|L. Then

ϕK|L(ψK|L(ϕK|L(f)g)) =
1

πL
Tr(ϕK|L(f)g)

= ϕK|L(f)
1

πL
Tr(g)

= ϕK|L(f)ϕK|L(ψK|L(g))

= ϕK|L(fψK|L(g)).

For the other equality, we compute

ϕK|L(ψK|L(ϕK|L(f))) =
1

πL
Tr(ϕK|L(f))

=
1

πL
ϕK|L(f)Tr(1)

=
qL
πL
ϕK|L(f).

Definition 4.2.4.
Let Nor denote the norm map of the extension BK|L|ϕK|L(BK|L). Then define

NorK|L := ϕ−1
K|L ◦Nor.

Remark 4.2.5.
The restrictions of ψK|L and NK|L to BL are denoted by ψL and NL respectively.
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These then are exactly the maps from [SV15, p. 8].

We then have the same remark as in [SV15, Remark 3.2, p. 8–9]. In the proof one
just has to do the following adaptions:
Replace ϕL, ψL, ψCol and NL by ϕK|L, ψL, our definition of ψCol and NK|L respectively.
Sometimes there is also a σK|L involved.

Remark 4.2.6.
1. ψK|L(AK|L) ⊆ AK|L and NK|L(AK|L) ⊆ AK|L.

2. On OKJZK we have ψK|L = π−1
L ψCol and NK|L = N.

3. On BK|L we have ϕK|L ◦ ψK|L ◦ ∂inv = ∂inv ◦ ϕK|L ◦ ψK|L.

4. NK|L(f)([c]φZ) = NK|L(f([c]φZ)) for any c ∈ O×
L and f ∈ BK|L.

5. NK|L(f) ≡ f mod πLAK|L for any f ∈ AK|L.

6. If f ∈ AK|L satisfies f ≡ 1 mod πmL AK|L for some m ≥ 1 then
NK|L(f) ≡ 1 mod πm+1

L AK|L.

7. (OK((Z))×)N=id = (A ×
K|L)

NK|L=id.

Corollary 4.2.7.
With the above Remark 4.2.6, 7. the isomorphism of Theorem 4.1.20 becomes

lim←−K
×
n
∼= (A ×

K|L)
NK|L=id.

Definition 4.2.8.
Let Ω1

AK|L
:= AK|LdZ be the differential forms , which are free and of rank one

over AK|L. Let furthermore

Res: Ω1
AK|L

−→ OK ,

(∑
i

aiZ
i

)
dZ 7−→ a−1

be the residue homomorphism.

Remark 4.2.9.
The homomorphism Res is continuous for the weak topology on Ω1

AK|L
.

Proof.
The preimage of πmL OK contains OKJZK and πmL AK|L and therefore in particular
XmOKJZK + πmL AK|L. Note that A+

K|L corresponds to OKJZK.

Remark 4.2.10.
The homomorphism Res does not depend on the choice of the variable.
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Proof.
This is [SV15, Remark 3.4, p. 10–11].

The following Remark explains how the Frobenius from K|L interacts with the
residue homomorphism. It’s not spectacular, but it leads later on to some changes in
the equations we deduce in the same way as [SV15, p. 16–18].

Remark 4.2.11.
For f ∈ AK|L we have

Res(fσK|L) = σK|L(Res(f)).

Definition 4.2.12.
We define the residue pairing by

AK|L × Ω1
AK|L

−→ OK , (f, ω) 7−→ Res(fω).

Remark 4.2.13.
The residue pairing is jointly continuous.

Remark 4.2.14.
The above residue pairing from Definition 4.2.12 induces for every m ≥ 1 a pairing

AK|L/π
m
L AK|L × Ω1

AK|L
/πmL Ω1

AK|L
−→ K/OK , (f, ω) 7−→ π−mL Res(fω) mod OK .

This again is continuous.

Definition 4.2.15.
In the following, we will denote by Homcts the set of continuous homomorphisms
between two objects.

Remark 4.2.16.
As in [SV15, (14), p. 11] the above Remark 4.2.14 together with [Bou07, X.28, Theorem
3] induces a continuous homomorphism of OK-modules

Ω1
AK|L

/πmL Ω1
AK|L

// Homcts
OK

(AK|L/π
m
L AK|L,K/OK),

ω � // [f 7→ π−mL Res(fω) mod OK ].

In particular, this is an isomorphism of topological OK-modules.

Proof.
This is similar to [SV15, Lemma 3.5, p. 11]
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Lemma 4.2.17.
Let M be a finitely generated AK|L/π

m
L AK|L-module. Then we have a topological

isomorphism

HomAK|L(M,Ω1
AK|L

/πmL Ω1
AK|L

)
∼= // Homcts

OK
(M,K/OK)

F � // π−mL Res(F (.)) mod OK .

Proof.
The proof is similar the one of [SV15, Lemma 3.6, p. 11–12].

Remark 4.2.18.
Since AK|L and AK|L are naturally isomorphic (by sending the variable Z to ωφ), we
have the language of (ϕK|L,ΓK)-modules and all its results also over AK|L. We will
make use of it in the following.

Definition 4.2.19.
Let M ∈Modet

ϕ,Γ(AK|L). We define the OK-linear endomorphism ψM of M by

ψM : M
(ϕlin

M )−1

// AK|L ϕK|L⊗AK|LM
//M

f ⊗m � // ψK|L(f)m.

Remark 4.2.20.
Let M ∈ Modet

ϕ,Γ(AK|L). Then the endomorphism ψM is continuous for the weak
topology and it satisfies the following formulas

ψM (ϕK|L(f)m) = fψM (m)

ψM (f(ϕM (m)) = ψK|L(f)m

ψM ◦ ϕM =
qL
πL
· idM ,

with f ∈ AK|L and m ∈M .

Proof.
That ψM satisfies the formulas follows immediately from the analogous formulas for
ψK|L and ϕK|L (cf. Remark 4.2.3). The latter formula together with the fact that
ϕM is open with respect to the weak topology, implies that ψM is continuous.

We now skip some technical details (cf. [SV15, p. 12-.14]), which won’t appear
again, but they play an important role in the proof of the next Lemma. Since the
proof in our case is literally the same, we also skip it here. But since this result is
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used later (cf. [SV15, Theorem 5.13, p. 30–31]) we wanted to list it here and say that
it is still true.

Lemma 4.2.21.
Let M ∈Modét

ϕ,Γ(AK|L) sucht that πmLM = 0 for some m ∈ N. Then ϕM − id is a
continuous and topologically strict endomorphism of M .

As in [SV15, p. 14–15] our next aim is to see that Modét
ϕ,Γ(AK|L) has an in-

ternal Hom-functor, i.e. that for any M,N ∈ Modét
ϕ,Γ(AK|L) the AK|L-module

HomAK|L(M,N) is also an étale (ϕK|L,ΓK)-module over AK|L. For this, we list the
results from loc. cit., which are proved similar in our case and add some computations.

Lemma 4.2.22.
Let M,N be two finitely generated AK|L-modules. Then we have:

1. The weak topology on HomAK|L(M,N) coincides with the topology of pointwise
convergence.

2. The bilinear map

HomAK|L(M,N)×M −→ N, (α,m) 7−→ α(m)

is continuous for the weak topology on all three terms.

Proof.
The proof is similar to the one of [SV15, Remark 3.13, p. 14–15]

Proposition 4.2.23.
Let M,N ∈ Modét

ϕ,Γ(AK|L). Then HomAK|L(M,N) is also an etale (ϕK|L,ΓK)-
module over AK|L with respect to

γ(α) := γ ◦ α ◦ γ−1

ϕHomAK|L (M,N)(α) := ϕlin
N ◦

(
idAK|L ⊗ α

)
◦
(
ϕlin
M

)−1

for any γ ∈ ΓK and α ∈ HomAK|L(M,N).

Proof.
We have to prove the following claims.
1. The ΓK-action commutes with ϕHomAK|L (M,N).

2. The ΓK-action is continuous for the weak topology.

3. HomAK|L(M,N) is etale.
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The proofs of 2 and 3 are similar to the argumentation after [SV15, Remark 3.13,
p. 15]. So 1. remains.
1. Let γ ∈ ΓK and α ∈ HomAK|L(M,N). Because ϕM and ϕN commute with the

action of ΓK we have
ϕlin
M ◦ γ = γ ◦ ϕlin

M

as well as the same formulas for N . So we have

γ(ϕHomAK|L (M,N)(α)) = γ ◦ (ϕHomAK|L (M,N)(α)) ◦ γ−1

= γ ◦
(
ϕlin
N ◦

(
idAK|L ⊗ α

)
◦
(
ϕlin
M

)−1
)
◦ γ−1

=
(
ϕlin
N ◦ γ

)
◦
(
idAK|L ⊗ α

)
◦
(
γ−1 ◦

(
ϕlin
M

)−1
)

= ϕlin
N ◦

(
γ ◦
(
idAK|L ⊗ α

)
◦ γ−1

)
◦
(
ϕlin
M

)−1

= ϕlin
N ◦

(
idAK|L ⊗

(
γ ◦ α ◦ γ−1

))
◦
(
ϕlin
M

)−1

= ϕHomAK|L (M,N)(γ(α)).

Remark 4.2.24.
Let M,N ∈Modét

ϕ,Γ(AK|L). Then the equality

ϕHomAK|L (M,N)(α)(ϕM (m)) = ϕN (α(m))

holds true for all α ∈ HomAK|L(M,N) and m ∈M .

Proof.
Let α ∈ HomAK|L(M,N) and m ∈M . Then

ϕHomAK|L (M,N)(α)(ϕM (m)) =

(
ϕlin
N ◦

(
idAK|L ⊗ α

)
◦
(
ϕlin
M

)−1
)
(ϕM (m))

= ϕlin
N

((
idAK|L ⊗ α

)((
ϕlin
M

)−1
(ϕlin

M (1⊗m))

))
= ϕlin

N ((id⊗ α)(1⊗m))

= ϕlin
N (1⊗ α(m))

= ϕN (α(m)).
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Proposition 4.2.25.
On the AK|L-module Ω1

AK|L
is via

γ · dZ := [χLT(γ)]
′(Z)dZ

ϕΩ1(dZ) := π−1
L [πL]

′(Z)dZ

a (ϕK|L,ΓK)-module structure defined.

Proof.
First note that [πL]φ(Z) ≡ πLZ + Zq mod πL and therefore [πL]

′
φ(Z) is divisible by

πL since qL is divisible by πL. Because ΓK and ϕΩ1 operate by multiplication, these
operations are continuous. The endomorphism ϕΩ1 is ϕK|L-linear by definition. We
have

ϕΩ1(γ(dZ)) = ϕΩ1([χLT(γ)]
′(Z)dZ)

= ϕK|L([χLT(γ)]
′(Z))ϕΩ1(dZ)

= π−1
L [χLT(γ)]

′([πL](Z))[πL]
′(Z)dZ

= π−1
L ([χLT(γ)] ◦ [πL])′dZ

= π−1
L ([χLT(γ) · πL])′dZ

= π−1
L ([πL · χLT(γ)])

′dZ

= π−1
L ([πL] ◦ [χLT(γ)])

′dZ

= π−1
L [πL]

′([χLT(γ)](Z))[χLT(γ)]
′(Z)dZ

= γ(π−1
L [πL]

′(Z)d(Z))

= γ(ϕΩ1(dZ)).

So the operations of ΓK and ϕΩ1 commute and therefore Ω1
AK|L

is a (ϕK|L,ΓK)-
module.

Definition 4.2.26.
Let χ : ΓK → O×

L be a continuous character, Wχ = OLtχ its representation module
and M ∈Modét

ϕ,Γ(AK|L). The χ-twisted module of M is defined by

M(χ) :=M ⊗OL
Wχ.

The AK|L-module structure is given by

a · (m⊗ w) = (am)⊗ w.
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Proposition 4.2.27.
Let χ : ΓK → O×

L be a continuous character, Wχ = OLtχ its representation module,
M ∈Modét

ϕ,Γ(AK|L) and M(χ) the χ-twisted module of M . Then on M(χ) we can
define operations of ϕK|L and ΓK by

ϕM(χ)(m⊗ w) := ϕM (m)⊗ w,

γ · (m⊗ w) := χ(γ)((γ ·m)⊗ w).

Then it is M(χ) ∈Modét
ϕ,Γ(AK|L) and ψM(χ)(m⊗ w) = ψM (m)⊗ w.

Proof.
The operation of ΓK on M(χ) is continuous because χ is continuous and the operation
of ΓK on M is continuous as well. The operation of ΓK commutes with ϕM(χ)

because the actions of ΓK and ϕM commute and ϕM is ϕK|L-linear, especially is
ϕM (am) = aϕM (m) for all a ∈ OL and m ∈M . It remains to show that the map

ϕlin
M(χ) : AK|L ⊗AK|L,ϕK|L M(χ)→M(χ), f ⊗m⊗ w 7→ f ⊗ ϕM(χ)(m⊗ w)

is bijective. This follows immediately from the assumption that ϕlin
M is bijective,

M(χ) =M ⊗Wχ and

ϕlin
M(χ)(f ⊗m⊗ w) = f ⊗ ϕM(χ)(m⊗ w)

= f ⊗ ϕM (m)⊗ w

= ϕlin
M (f ⊗m)⊗ w,

i.e. the inverse map of ϕlin
M(χ) is the map

M(χ)→ AK|L ⊗AK|L,ϕK|L M(χ), m⊗ w 7→ (ϕlin
M )−1(m)⊗ w.

Remark 4.2.28.
For the character χLT we take WχLT = T = OLt0 as representation module and for
χ−1
LT we take its dual, i.e. Wχ−1

LT
= T ∗ = OLt

∗
0 where t∗0 is the dual basis of t0.

Proposition 4.2.29.
The map

AK|L(χLT)→ Ω1
AK|L

, f ⊗ t0 7→ fgLTdZ
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is an isomorphism of (ϕK|L,ΓK)-modules. Therefore Ω1
AK|L

is an etale (ϕK|L,ΓK)-
module.

Proof.
In this proof we will call the map under consideration α. It is well defined and bijective
since gLT is a unit in OLJZK. So we have to show that α respects the operations of
ΓK and ϕK|L. Let f ∈ AK|L then we have

α(ϕAK|L(χLT)(f(Z)⊗ t0)) = α(ϕK|L(f(Z))⊗ t0)

= α(fσK|L([πL](Z))⊗ t0)

= fσK|L([πL](Z))gLT(Z)dZ

= fσK|L([πL](Z))π
−1
L πLgLT(Z)dZ

= fσK|L([πL](Z))gLT([πL](Z))[πL]
′(Z)π−1

L dZ

= ϕK|L(f(Z))ϕK|L(gLT(Z))ϕΩ1(dZ)

= ϕΩ1(f(Z)gLT(Z)dZ)

= ϕΩ1(α(f(Z)⊗ t0)).

Let additionally γ ∈ ΓK , then

α(γ · (f(Z)⊗ t0)) = α((χLT(γ)γ · f(Z))⊗ t0)

= χLT(γ)(γ · f(Z))gLT(Z)dZ

= (γ · f(Z))gLT([χLT(γ)](Z))[χLT(γ)]
′(Z)dZ

= (γ · f(Z))(γ · gLT(Z))(γ · dZ)

= γ · (f(Z)gLT(Z)dZ)

= γ · α(f(Z)⊗ t0).

So α respects the given ϕK|L- and ΓK-structures. According to Definition and
Proposition 4.2.26 we have AK|L(χLT) ∈Modét

ϕ,Γ(AK|L) and so we also have Ω1
AK|L

∈
Modét

ϕ,Γ(AK|L).

Remark 4.2.30.
The above proof showed also that gLT(Z)dZ is ϕΩ1-invariant, i.e. it is

ϕΩ1(gLT(Z)dZ) = gLT(Z)dZ.

And because of gLT(Z)dZ = d logLT is d logLT also ϕΩ1-invariant.
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We still follow [SV15, p. 16–18] and as it is done there, we want to deduce some
rules for the computation of the residue pairing, we introduced in Definition 4.2.12.

Remark 4.2.31.
For û ∈ (OK((Z))

×)N=id the differential form dû
û is ψΩ1-invariant. Let us first

compute

dû

û
=
û′

û
dZ

= ∆LT(û)gLTdZ

= ∆LT(û)d logLT .

With this we get

ψΩ1

(
dû

û

)
= ψΩ1(∆LT(û)d logLT)

4.2.30
= ψΩ1(∆LT(û)ϕΩ1(d logLT))

= ψK|L(∆LT(û))d logLT

= π−1
L ψCol(∆LT(û))d logLT

4.1.26
= ∆LT(N(û))d logLT

= ∆LT(û)d logLT

=
dû

û

Lemma 4.2.32.
The map d: AK|L → Ω1

AK|L
satisfies

1. πL · ϕΩ1 ◦ d = d ◦ ϕK|L.

2. γ ◦ d = d ◦ γ for any γ ∈ ΓK .

3. πL · ψΩ1 ◦ d = d ◦ ψK|L.

Proof.
This is [SV15, Lemma 3.16, p. 16]. We add some details and transfer it to our
situation.

1. Let f ∈ AK|L. Then:

ϕΩ1(df) = ϕΩ1(f ′dZ) = ϕK|L(f
′)ϕΩ1(dZ)

= f ′σ([πL](Z))π
−1
L [πL]

′(Z)dZ

= π−1
L d(fσK|L([πL](Z))) = π−1

L d(ϕK|L(f(Z)))
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2. Let f ∈ AK|L. Then:

γ · df = γ(f ′dZ) = (γ · f ′)(γ · dZ)

= f ′([χLT(γ)(Z))[χLT(γ)]
′(Z)dZ

= d(f([χLT(γ)](Z))) = d(γ · f)

3. Since ϕΩ1 is injective the identity in question is equivalent to

ϕΩ1 ◦ ψΩ1 ◦ d = d ◦ ϕK|L ◦ ψK|L

by the first part of this proof. From Proposition 4.2.29 we deduce

(ϕΩ1 ◦ ψΩ1)(fgLTdZ) = (ϕK|L ◦ ψK|L)(f)gLTdZ

for all f ∈ AK|L since AK|L(χLT) and Ω1
AK|L

are isomorphic as (ϕK|L,ΓK)-
modules and therefore AK|L and Ω1

AK|L
are isomorphic as AK|L-modules

equipped with an étale endomorphism ϕK|L resp. ϕΩ1 . Let f ∈ AK|L. Then:

(ϕΩ1 ◦ ψΩ1)(df) = (ϕΩ1 ◦ ψΩ1)(∂inv(f)gLTdZ)

= ((ϕK|L ◦ ψK|L)(∂inv(f)))gLTdZ

4.2.6.3
= ∂inv(ϕK|L ◦ ψK|L(f))gLTdZ

(4.1.5)
= d(ϕK|L ◦ ψK|L(f)).

In the following Proposition Remark 4.2.11 leads to some changes to the corre-
sponding formulas of [SV15, Proposition 3.17, p. 16].

Proposition 4.2.33.
The residue map Res: Ω1

AK|L
→ K (c.f. Definition 4.2.8) satisfies the following

equalities:

1. Res ◦ ϕΩ1 = π−1
L qLσK|L ◦ Res.

2. Res ◦ γ = Res for all γ ∈ ΓK .

3. Res ◦ ψΩ1 = σ−1
K|LRes.

Proof.
The proof is similar to the proof of [SV15, Proposition 3.17, p. 16]. In the reduction
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step, explained before starting proving the results, one has to recall that ϕΩ1 acts as
σK|L on the coefficients, which leads exactly to the above formulas.

Corollary 4.2.34.
The residue pairing satisfies

Res(fψΩ1(ω)) = σ−1
K|LRes(ϕK|L(f)ω)

for all f ∈ AK|L and ω ∈ Ω1
AK|L

.

Proof.
The proof is similar to the proof of [SV15, Corollary 3.18, p. 17]. We do it here,
because we have some slightly different formulas. From the projection formula in
Remark 4.2.20 we get that the left hand side is equal to

Res(ψΩ1(ϕK|L(f)ω).

The above Lemma 4.2.33 then says

Res(ψΩ1(ϕK|L(f)ω) = σ−1
K|LRes(ϕK|L(f)ω).

Proposition 4.2.35.
Let M ∈Modét

ϕ,Γ(AK|L) such that πLM = 0 fur some n ≥ 1. Then the pairing

[, ] = [, ]M : M ×HomAK|L(M,Ω1
AK|L

/πnLΩ
1
AK|L

) // K/OK ,

(m,F ) � // π−nL Res(F (m)) mod OK

satisfies the following properties.

1. The pairing [, ]M is jointly continuous.

2. The pairing [, ]M is ΓK-invariant.

3. Under the pairing [, ]M the operator ψM is left adjoint to ϕHomAK|L (M,Ω1
AK|L

/πn
LΩ

1
AK|L

),

i.e. for all m ∈M and F ∈ HomAK|L(M,Ω1
AK|L

/πnLΩ
1
AK|L

) there holds

[ψM (m), F ]M = [m,ϕHomAK|L (M,Ω1
AK|L

/πn
LΩ

1
AK|L

)(F )]M .
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4. Under the pairing [, ]M the operator ϕM is left adjoint to ψHomAK|L (M,Ω1
AK|L

/πn
LΩ

1
AK|L

),

i.e. for all m ∈M and F ∈ HomAK|L(M,Ω1
AK|L

/πnLΩ
1
AK|L

) there holds

[ϕM (m), F ]M = [m,ψHomAK|L (M,Ω1
AK|L

/πn
LΩ

1
AK|L

)(F )]M .

Proof.
The proof is similar to the argumentation between [SV15, Corollary 3.18, p. 17] and
[SV15, Proposition 3.19, p. 17] and the proof of [SV15, Proposition 3.19, p. 17–18].
Note that their (17) is proven here (c.f. Remark 4.2.24).

Remark 4.2.36.
Let M ∈Modét

ϕ,Γ(AK|L) such that πnLM = 0 fur some n ≥ 1. Then the pairing

[, 〉 = [, 〉M : M ×HomAK|L(M,AK|L(χLT)/π
n
LAK|L(χLT)) // K/OK ,

(m,F ) � // π−nL Res(F (m)gLTdZ) mod OK

satisfies analogous properties to the ones of Proposition 4.2.35.

Proof.
This follows with Proposition 4.2.29 from Proposition 4.2.35.

Since we mentioned in Remark 4.2.18 that the language of (ϕK|L,ΓK)-modules
translates from AK|L to AK|L and we explained the theory in detail over AK|L, we
will skip [SV15, Section 4, p. 18–23] in our discussion, since there is nothing new
to discover. The only thing we want to mention is that the above Remark 4.2.36
translates into to language of AK|L. For further applications, we will state it here.

Remark 4.2.37.
Let M ∈Modét

ϕ,Γ(AK|L) such that πnLM = 0 fur some n ≥ 1. Then the pairing

[, 〉 = [, 〉M : M ×HomAK|L(M,AK|L(χLT)/π
n
LAK|L(χLT)) // K/OK ,

(m,F ) � // π−nL Res(F (m)gLTdZ) mod OK

satisfies analogous properties to the ones of Proposition 4.2.35.

4.3 Local Tate Duality and Iwasawa Cohomology

This section is nearly exactly [SV15, Section 5, p. 23–31]. Just for completeness we
want to list the results, which we will need later on. Note that [SV15, Remark 5.1,
p. 23] was also proven here (cf. Lemma 5.1.1).
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Definition 4.3.1.
Let M be a topological OL-module. The Pontrjagin dual of M is defined as

M∨ := Homcts
OL

(M,L/OL).

It is always equipped with the compact-open topology.
Note that as in [SV15, Lemma 5.3, p. 24–25] we can prove for topological OK-modules:

M∨ ∼= Homcts
OK

(M,K/OK).

Proposition 4.3.2 (Pontrjagin duality).
The functor −∨ defines an involuntary contravariant autoequivalence of the category
of (Hausdorff) locally compact linear-topological OL-modules.
In particular, for such a module M there is a canonical isomorphism

M
∼=−→ (M∨)∨.

Proof.
This is [SV15, Proposition 5.4, p. 25–26].

Remark 4.3.3.
Let M0

α→M
β→M1 be a sequence of locally compact linear- topological OK-modules

such that im(α) = ker(β) and β is topologically strict with closed image. Than the
dual sequence

M∨
1
β∨
→M∨ α∨

→M∨
0

is exact as well.

Proof.
The proof is similar to the one of [SV15, Remark5.5, p. 27].

Remark 4.3.4.
Let V ∈ Rep

(fg)
OL

(GK) of finite length and n ≥ 1 sucht that πnLV = 0. Then there is a
natural isomorphism of topological groups:

MK|L(V )∨ ∼= MK|L(V
∨(χLT)).

This isomorphism identifies ψMK|L(V ∨(χLT)) with ϕ∨
MK|L(V ).

Proof.
This is [SV15, Remark 5.6, p. 27]
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Proposition 4.3.5 (Local Tate duality).
Let V ∈ Rep

(fg)
OL

(GK), n ≥ 1 such that πnLV = 0 and E a finite extension of K.
Then the cup product and the local invariant map induce perfect pairings of finite
OL-modules

H i(GE , V )×H2−i(GE ,HomZp(V,Qp/Zp(1)))→ H2(GE ,Qp/Zp(1)) = Qp/Zp

and

H i(GE , V )×H2−i(GE ,HomOL
(V, L/OL(1)))→ H2(GE , L/OL(1)) = L/OL.

There −(1) denotes the twist by the cyclotomic character.
This means that there are conical isomorphisms

H i(GE , V ) ∼= H2−i(K,V ∨(1))∨.

Proof.
This is [SV15, Proposition 5.7, p. 27–28], where [Ser73, Theorem 2, p. 91–92] is applied.
Because the latter is slightly different formulated, we want to check it’s compatibility
here:
Serre defines the dual as Homcts

Zp
(V, µ), where µ is the union of all roots of unity. The

condition πnLV = 0 implies that V is also killed by a power of p. This means, that the
image of each homomorphism V → µ is contained in the set µp of p-power roots of
unity. As Abelian Group µp is isomorphic to Qp/Zp and as GK-module to the Tate
twist Qp/Zp(1). Since GK acts trivially on L we obtain together with [SV15, Lemma
5.3, p. 24–25]

Homcts
Zp
(V, µ) ∼= Homcts

Zp
(V,Qp/Zp(1)) ∼= Homcts

OL
(V, L/OL(1)).

Therefore the first pairing is [Ser73, Theorem 2, p. 91–92].

Definition 4.3.6.
Let V ∈ Rep

(fg)
OL

(GK). The generalized Iwasawa cohomology of V is defined by

H i
Iw(K∞|K,V ) := lim←−

K⊆E⊆K∞

H i(GE , V ).

We always consider these modules as ΓK-modules.

Remark 4.3.7.
Let E|K a finite extension contained in K∞. Then there is an isomorphism of
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OL-modules:
lim←−

E⊆E′⊆K∞

H i(GE′ , V ) ∼= H i
Iw(K∞|K,V ).

Proof.
The claim follows immediately from the fact, that the set {E′|E finite | E′ ⊆ K∞} is
cofinal in the set {E′|K finite | E′ ⊆ K∞}.

Lemma 4.3.8.
Let V ∈ Rep

(fg)
OL

(GK). Then we have

H i
Iw(K∞|K,V ) ∼= H i(GK ,OLJΓKK⊗OL

V ).

Proof.
The proof is similar to the one of [SV15, Lemma 5.8, p. 28–29].

Lemma 4.3.9.
V 7→ HIw(K∞|K,V ) defines a δ-functor on Rep

(fg)
OL

(GK).

Proof.
Replace ΓL by ΓK in the proof of [SV15, Lemma 5.9, p. 29].

Remark 4.3.10.
Let V, V0 ∈ Rep

(fg)
OL

(GK) such that V0 is OL-free and GK acts through its factor ΓK

on V0. Then there is a natural isomorphism

H i
Iw(K∞|K,V ⊗OL

V0) ∼= H i
Iw(K∞|K,V )⊗OL

V0.

Remark 4.3.11.
Let V ∈ Rep

(fg)
OL

(GK) of finite length. Then there is an isomorphism

H i
Iw(K∞|K,V ) ∼= H i(HK , V

∨(1))∨.

Note that HK = GK∞.

Proof.
From Proposition 4.3.5 we deduce

H i(GKn , V ) ∼= H2−i(GKn , V
∨(1))∨
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for every n ∈ N. Taking projective limits gives us

H i
Iw(K∞|K,V ) = lim←−H

i(GKn , V )

= lim←−H
2−i(GKn , V

∨(1))∨

= lim←−Homcts
OL

(H2−i(GKn , V
∨(1)), L/OL)

= Homcts
OL

(lim−→H2−i(GKn , V
∨(1)), L/OL)

= Homcts
OL

(H2−i(lim←−GKn , V
∨(1)), L/OL)

= Homcts
OL

(H2−i(HK , V
∨(1)), L/OL)

= H2−i(HK , V
∨(1))∨.

Lemma 4.3.12.
1. H i

Iw(K∞|K,V ) = 0 for i 6= 1, 2.

2. H2
Iw(K∞|K,V ) is finitely generated as OL-module.

3. H1
Iw(K∞|K,V ) is finitely generated as OLJΓKK-module.

Proof.
The proof is similar to the one of [SV15, Lemma 5.12, p. 29–30].

Theorem 4.3.13.
Let V ∈ Rep

(fg)
OL

(GK), τ = χcycχ
−1
LT and ψ = ψMK|L(V (τ−1)). Then we have an exact

sequence

0 −→ H1
Iw(K∞|K,V ) −→MK|L(V (τ−1))

ψ−1−→MK|L(V (τ−1)) −→ H2
Iw(K∞|K,V ) −→ 0,

which is functorial in V .
Furthermore, each occurring map is continuous and OLJΓKK-equivariant.

Proof.
The proof for the exactness of the sequence is similar to the one of [SV15, Theorem
5.13, p. 30–31]. The proof for the continuity and the OLJΓKK-equivariance is similar
to the one of [SV15, Remark 5.14, p. 31].

4.4 The Kummer Map

The next topic in [SV15, Section 6, p. 31–34] is the formulation of a reciprocity law
and then to proof it in the following section. We imitate the ideas and constructions
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from loc. cit., and explain where the changes are, in order to transform the proof to
our situation. First, we look at the Kummer isomorphism

κ : A(K∞) := lim←−
n,m

K×
n /K

×pm
n

∼= H1
Iw(K∞|K,Zp(1))

which then leads to the twisted Kummer isomorphism

A(K∞)⊗Zp T
∗ κ⊗idT∗

∼=
// H1

Iw(K∞|K,Zp(1))⊗Zp T
∗ 4.3.10

∼=
// H1

Iw(K∞|K,OL(τ)).

[SV15, Theorem 5.13, p. 30–31] (resp. Theorem 4.3.13) then gives us the isomor-
phism

Exp∗ : H1
Iw(K∞|K,OL(τ)) ∼= MK|L(OL)

ψ=1 = A
ψK|L=1

K|L .

Then, combining the twisted Kummer isomorphism with Exp∗ gives us the homo-
morphism

∇ : (lim←−
n

K×
n )⊗Zp T

∗ −→ Aψ=1
K|L

u⊗ at∗0 7−→ a
∂inv(gu,t0)(ιLT(t0))

gu,t0(ιLT(t0))
.

This homomorphism ∇ is well defined:
Theorem 4.1.20 says, that for u ∈ lim←−K

×
n the power series gu,t0 ∈ (OK((Z))×)N=id is

unique. Since ∆LT(f) = ∂inv(f)/f by definition we deduce from Remark 4.1.27, that
∆LT(gu,t0) ∈ OL((Z))

ψCol=πL . Remark 4.2.6 says that ψK|L = π−1
L ψCol, therefore we

have ψK|L(∆LT(gu,t0)) = ∆LT(gu,t0), i.e. the image of ∇ is contained in A
ψK|L=1

K|L .

Remark 4.4.1.
The homomorphism ∇ is independent of the choice of t0.

Proof.
It’s the same proof as in [SV15, Remark 6.1, p. 32].
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Theorem 4.4.2.
The following diagram is commutative:

(lim←−nK
×
n )⊗Zp T

∗ −κ⊗idT∗

∼=
//

∇ ''

H1
Iw(K∞|K,OL(τ))

∼=
Exp∗ww

Aψ=1
K|L .

By rec : (lim←−K
×
n ) → Hab

K (p) we denote the map into the maximal abelian pro-p
quotient Hab

K (p) of HK induced by the reciprocity homomorphisms of local class field
theory for the intermediate extensions Kn. By recEK

: E×
K|L → Hab

K (p) we denote the
reciprocity homomorphism in characteristic p.
As explained in [SV15, p. 33] the proof of Theorem 4.4.2 then reduces to the following
case.

Proposition 4.4.3.
For any z ∈ AK|L and u ∈ E×

K|L with unique lift û ∈ (A×
K|L)

N=id we have

Res

(
z
dû

û

)
= ∂ϕ(z)(recEK|L(u)),

where ∂ϕ is the connecting homomorphism

Since the connecting homomorphism for V = OL induces, by reduction modulo
πnLOL, the corresponding connecting homomorphism for V = OL/π

n
LOL, it suffices to

prove the identity in Proposition 4.4.3 modulo πnLOL for any n ≥ 1. Furthermore, for
every û ∈ (A ×

K|L)
N=id the differential form dû

û is ψΩ1-invariant (c.f. Remark 4.2.31)
and by the adjointness of ψΩ1 and ϕK|L (c.f. Remark 4.2.34) we obtain

Res

(
ϕmK|L(z)

dû

û

)
= σmK|LRes

(
zψΩ1

(
dû

û

))
= σmK|LRes

(
z
dû

û

)
for any m ≥ 1. Therefore, in order to prove Proposition 4.4.3 and Theorem 4.4.2 it
suffices to prove the following Lemma. After the Lemma, we explain how the proof of
[SV15, Lemma 7.18, p. 43–44], which is the analogous statement for AL, transforms
to our situation.

Lemma 4.4.4.
For any z ∈ AK|L and u ∈ E×

K|L with unique lift û ∈ (A×
K|L)

N=id we have

Res

(
ϕn−1
K|L(z)

dû

û

)
≡ σn−1

K|L(∂ϕ(recEK|L(u))) mod πnLOK ,
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for all n ≥ 1.

So, in comparison to [SV15, Section 7, p. 34–44] wo have to explain where to find
the Frobenius on the right hand side. Taking a closer look at loc. cit., on sees that
all the hard work was done there, we just have to identify it. In particular, [SV15,
Remark 7.3, p. 35–36], [SV15, Lemma 7.4, p. 36], [SV15, Lemma 7.5, p. 36] and the
discussion at [SV15, p. 37] are exactly the same for AK|L instead of AL. For a better
clarity of the presentation, we summarize the results from loc. cit. in the following
Proposition.

Proposition 4.4.5.
For every n ≥ 1, there exist unique OK-linear homomorphisms

αn : AK|L //Wn(EK|L)L,

αn : AK|L/π
n
LAK|L //Wn(EK|L)L.

such that αn is injective and the following diagram commutes

Wn(AK|L)L
Φn−1 //

Wn(pr)L
��

AK|L

αn

��
Wn(EK|L)L

Frn−1
//Wn(EK|L)L.

Furthermore, for every n ≥ 1, it exists a unique OK-linear homomorphism

wn−1 : Wn(EK|L)L // AK|L/π
n
LAK|L

such that the following diagram commutes

Wn(AK|L)L
Φn−1 //

Wn(pr)L
��

AK|L

pr

��
Wn(EK|L)L

wn−1// AK|L/π
n
LAK|L

and the following equalities hold

αn ◦ wn−1 = Frn−1,

wn−1 ◦ αn = ϕn−1
K|L,

wn−1 ◦ αn = pr ◦ ϕn−1
K|L.

Here the first equality is an equality of endomorphisms of Wn(EK|L)L, the second is
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one of endomorphisms of AK|L/π
n
LAK|L and the last one is a homomorphism from

AK|L to AK|L/π
n
LAK|L.

The discussion on the following pages (to be precise: [SV15, p. 37–43]) is the same
for AK|L instead of AL. The change then comes in the last equality of the last line
in the proof of [SV15, Lemma 7.18]. Roughly, one uses there that wn−1 ◦ αn = ϕn−1

L

on AL/π
n
LAL and therefore it is the identity for elements coming from OL, what is

the case there. For an element y ∈ OK we get with the last equality in the above
Proposition 4.4.5

(wn−1 ◦ αn)(y) = ϕn−1
K|L(y) mod πnL = σn−1

K|L(y) mod πnL.

This is exactly the desired power of σK|L from Lemma 4.4.4, which did not occur in
[SV15, Lemma 7.18, p. 43–44], since the Frobenius is equal to the identity on the base
field.





Chapter 5

Galois cohomology in terms
of Lubin-Tate (ϕ,Γ)-modules

We keep the notation from Chapter 3. Recall from Theorem 3.2 (resp. from [Sch17,
p. 113-114]) that Esep

L is the residue class field of A and Esep,+
L is the residue class

field of A+.

5.1 Description with ϕ

The goal of this section is to compute Galois cohomology from the generalized ϕ-Herr
complex, which is related to ϕK|L and ΓK .

Lemma 5.1.1.
1. The following sequences are exact:

0 // OL // A
Fr−id // A // 0.

0 // OL // A+ Fr−id // A+ // 0.

2. Let E | L be a finite extension. For every n ∈ N the maps

ϕE|L − id : ωnφE
+
E

// ωnφE
+
E ,

Fr− id : ωnφE
sep,+
L

// ωnφE
sep,+
L

are isomorphisms.
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3. For every n ∈ N the map

Fr− id : ωnφA
+ // ωnφA

+

is an isomorphism.

Proof.
1. We start with the sequence

0 // kL // Esep
L

x 7→xqL−x // Esep
L

// 0,

and claim that it is exact. Recall that Fr(x) ≡ xqL mod πL holds for all x ∈ A

by definition. The inclusion OL ↪→ A induces the inclusion kL ↪→ Esep
L and we

have
ker(Fr− id) = {x ∈ Esep

L | xqL − x} = kL.

It remains to check that Fr− id is surjective on Esep
L . But since the polynomial

XqL −X − α is separable for every α ∈ Esep
L and Esep

L is separably closed by
definition this follows immediately.
Now suppose that the sequence

0 // OL/π
n
LOL

// A/πnLA
ϕL−id // A/πnLA

// 0

is exact for n ≥ 1 and consider the following commutative diagram

0 // OL/π
n
LOL

// A/πnLA
ϕL−id // A/πnLA

// 0

0 // OL/π
n+1
L OL //

OOOO

A/πn+1
L A

ϕL−id //

OOOO

A/πn+1
L A //

OOOO

0.

Our aim is to show that the second sequence is exact. The kernel of the
homomorphism OL ↪→ A � A/πn+1

L A is πn+1
L OL, i.e. we have exactness at

the first position. Since we have ϕL(x) = x for all x ∈ OL, we also have
OL/π

n+1
L OL ⊆ ker(Fr− id). So let x ∈ A such that Fr(x)− x ≡ 0 mod πn+1

L A.
Then we also have Fr(x) − x ≡ 0 mod πnLA and because the first sequence
is exact, we obtain a y ∈ OL such that y ≡ x mod πnLA. Then there is an
α ∈ A such that x − y = πnLα, especially we have x − y ≡ πnLα mod πn+1

L A.
Since Fr(X) ≡ XqL mod πL we get Fr(α) ≡ αqL mod πLA and therefore
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Fr(πnLα) ≡ πnLαqL mod πn+1
L A since Fr is OL-linear. Then we also get

0 ≡ (Fr− id)(x− y) ≡ (Fr− id)(πnLα) ≡ πnL(αqL − α) mod πn+1
L A.

Since A is a domain, this then implies αqL ≡ α mod πLA. Since the sequence
in question is exact for n = 1 by the start of the proof, we then get a z ∈ OL

such that z ≡ α mod πLA, i.e. it exists β ∈ A such that α = z + πLβ. We
then get

x ≡ y + πnLα ≡ y + πnL(z + πLβ) ≡ y + πnLz mod πn+1
L A,

i.e. ker(Fr− id) ⊆ OL/π
n+1
L OL.

It remains to check that Fr−id is surjective on A/πn+1
L A. So let x ∈ A. Because

Fr−id is surjective on A/πnLA we get a y ∈ A such that ϕL(y)−y ≡ x mod πnLA.
As before there is now an α ∈ A such that ϕL(y)− y ≡ x+ πnLα mod πn+1

L A.
Again, since the sequence for n = 1 is exact we can find z ∈ A such that
ϕL(z) − z ≡ α mod πLA and therefore we can find β ∈ A such that
ϕL(z)− z + πLβ = α. We then get

Fr(y − πnLz)− (y − πnLz) = Fr(y)− y − πnL(Fr(z)− z)

≡ x+ πnLα− πnLα+ πn+1
L β ≡ x mod πn+1

L A,

i.e. y − πnLz is modπn+1
L A a preimage of x under ϕL − id.

Since the transition maps OL/π
n+1
L OL → OL/π

n
LOL are surjective, the in-

verse system (OL/π
n
LOL)n is a Mittag-Leffler System and therefore we have

lim←−
1 OL/π

n
LOL = 0 (cf. Remark 2.3.9). By taking the inverse limit of the

sequence

0 // OL/π
n
LOL

// A/πnLA
Fr−id // A/πnLA

// 0

we then get the exact sequence

0 // OL // A
Fr−id // A // 0.

The proof of the exactness of the second sequence is similar to the prove above.
Just replace Esep

L by Esep,+
L which is the separable closure of E+

L in Esep
L .

2. As before we have Fr(x) = xqL for all x ∈ Esep
L . Especially this equation holds

for elements in Esep,+
L and E+

E . The injectivity of the above maps then is easy
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to see:
Let 0 6= x ∈ ωnφE

sep,+
L . So, in particular we have degωφ

(x) ≥ n > 0 and therefore
also degωφ

(Fr(x)) > degωφ
(x), i.e. Fr(x)− x 6= 0 and so Fr− id is injective on

ωnφE
+. Because of E+

E ⊆ Esep
L the homomorphism ϕE|L − id is also injective on

ωnφE
+
E .

For the surjectivity let α be an element of ωnφE
sep,+
L or of ωnφE

+
E . Then the

series (Fr(α)i)i converges to zero and therefore

β :=

∞∑
i=0

−Fr(α)i

is also an element of ωnφE
sep,+
L or of ωnφE

+
E and clearly is a preimage of α under

Fr− id.

3. Let n, l ∈ N be fixed and note that there is a canonical identification

(ωnφA
+)/(πlLω

n
φA

+) ∼= ωnφ(A
+/πlLA

+)

since ωnφ is not a zero divisor in both A+ and A+/πlLA
+. Now assume that

Fr− id : ωnφ(A
+/πkLA

+) // ωnφ(A
+/πkLA

+)

for all natural numbers k ≤ l is an isomorphism. Note that we just proved this
for l = 1. Consider the commutative diagram:

Fr− id : ωnφ(A
+/πlLA

+) // ωnφ(A
+/πlLA

+)

Fr− id : ωnφ(A
+/πl+1

L A+) //

OOOO

ωnφ(A
+/πl+1

L A+)

OOOO

Our aim is to show, that the latter horizontal homomorphism is also an isomor-
phism.
Let x ∈ A+ such that ωnφx 6≡ 0 mod πl+1

L A+. The degree n-term (with respect
to ωφ) of Fr(ωnφx) − ωnφx is ωnφ(πL − 1)x and therefore it is unequal to zero
modulo πl+1

L . To see this, we assume ωnφ(πL − 1)x ≡ 0 mod πn+1
L and let j be

the smallest integer such that 2j ≥ n+ 1 and multiply this congruence with
(1 + πL)(1 + π2L) · · · (1 + π2

j−1

L ). Then we get

0 ≡ ωnφ(π
j
L − 1)x ≡ −ωnφx mod πn+1

L A+



Chapter 5. Galois cohomology in terms of Lubin-Tate
(ϕ,Γ)-modules 121

what we excluded, i.e. it has to be ωnφ(πL−1)x 6≡ 0 mod πn+1
L A+ and therefore

Fr− id is injective on ωnφ(A
+/πl+1

L A+).
Let x ∈ ωnφA+. Then there exists y ∈ ωnφA+ such that ϕL(y)−y ≡ x mod πlLA

+

(because we assumed the surjectivity for all values ≤ l), i.e. there exists
α ∈ ωnφA+ such that Fr(y)− y = x+ πlLα. Then again there exists β ∈ ωnφA+

such that Fr(β) − β ≡ α mod πL, i.e. there exists some η ∈ ωnφA+ such that
Fr(β)− β = α+ πLη. We then get

(Fr− id)(y − πlLβ) = (Fr− id)(y)− πlL(Fr− id)(β)

= x+ πlLα− πlL(α+ πLη) ≡ x mod πl+1
L A+,

i.e. the map Fr− id is surjective on ωnφ(A
+/πl+1

L A+). Since these maps are all
isomorphisms, passing to the projective limit gives that the map Fr− id is an
isomorphism on ωnφA

+

Corollary 5.1.2.
For every n ∈ N the following sequence is exact:

0 // OL // A/ωnφA
+ Fr−id // A/ωnφA

+ // 0.

Proof.
In Lemma 5.1.1 we showed that

0 // OL // A
Fr−id // A // 0.

is an exact sequence and that

Fr− id : ωnφA
+ // ωnφA

+

is an isomorphism for every n ∈ N. Since every element of the image of OL ↪→ A has
degree 0 (with respect to ωφ) the homomorphism OL → A/ωnφA

+ is still injective.
Since Fr fixes OL it is clear that we have OL ⊆ ker(Fr− id). For the other inclusion
let x ∈ ker(Fr − id). Then there exists an α ∈ A such that α mod ωnφA

+ = x and
Fr(α)− α ∈ ωnφA+. But since Fr− id is an isomorphism on ωnφA

+ there exists also a
β ∈ ωnφA+ ⊆ A such that Fr(β)− β = Fr(α)− α. Because of the exactness of

0 // OL // A
Fr−id // A // 0
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it then exists η ∈ OL such that η = α− β. This implies η ≡ α mod ωnφA
+, i.e. η = x

which means ker(Fr − id) ⊆ OL. This proves the exactness in the middle. For the
surjectivity of Fr− id recall that A � A/ωnφA

+ and Fr− id : A→ A are surjective
and consider the commutative diagram

A
Fr−id // //

����

A

����
A/ωnφA

+
Fr−id

// A/ωnφA
+.

This implies that the homomorphism Fr− id : A/ωnφA
+ → A/ωnφA

+ is also surjective.

Lemma 5.1.3.
Let A|AL be a finite, unramified extension. Then, for every m ∈ N, the canonical
projection A/πm+1

L A→ A/πmL A has a continuous, set theoretical section with respect
to the weak topology on A.

Proof.
From Proposition 3.5.4 we deduce that

A ∼= lim←−
n

OE/π
n
LOE((X))

for some finite, unramified extension E|L. Therefore we have

A/πmL A = OE/π
m
L OE((X))

for every m ∈ N. Therefore it is enough to give a continuous set theoretical section
of the canonical projection OE/π

m+1
L OE((X)) → OE/π

m
L OE((X)) with respect to

the X-adic topology. Since the OE/π
m
L OE are finite discrete, there exists for every

m ∈ N a continuous map

ιm : OE/π
m
L OE // OE/π

m+1
L OE

which is a set theoretical section of the canonical projection. We then define a map

αm : OE/π
m
L OE((X)) // OE/π

m+1
L OE((X)),∑

i>>−∞ λiX
i � //

∑
i>>−∞ ιm(λi)X

i.

This then clearly is a set theoretical section of the canonical projection. We have to
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check continuity.
So let f ∈ OE/π

m+1
L OE((X)) and n ∈ N0. If then α−1

m (f +XnOE/π
m+1
L OEJXK) is

empty, there is nothing to prove. So assume there is g ∈ α−1
m (f+XnOE/π

m+1
L OEJXK)

and let h ∈ XnOE/π
m
L OEJXK. Then g and g+h coincide in degrees < n and therefore,

by definition, also αm(g) and αm(g + h) coincide in degrees < n, i.e.

αm(g + h) ∈ αm(g) +XnOE/π
m+1
L OEJXK = f +XnOE/π

m+1
L OEJXK

since αm(g) ∈ f +XnOE/π
m+1
L OEJXK. It then follows

g +XnOE/π
m
L OEJXK ⊆ α−1

m (f +XnOE/π
m+1
L OEJXK)

and therefore that αm is continuous.

Corollary 5.1.4.
For every m ∈ N the canonical projection A/πm+1

L A → A/πmLA has a continuous,
set theoretical section.

Proof.
Since A is the πL-adic completion of Anr

L it is

A/πmLA = Anr
L /π

m
LAnr

L

for every m ∈ N. Since colimits are exact it is

Anr
L /π

m
LAnr

L =
⋃

A|AL fin, nr

A/πmL A

for every m ∈ N and since we have for every A|AL finite and unramified and
every m ∈ N a continuous, set theoretical section of the canonical projection
A/πm+1

L A→ A/πmL A (cf. Lemma 5.1.3) this induces for every m ∈ N a set theoreti-
cal section of the canonical projection Anr

L /π
m+1
L Anr

L → Anr
L /π

m
LAnr

L , which then is
continuous, since Anr

L carries the topology of the colimit and then so does Anr
L /π

m
LAnr

L

for every m ∈ N.

Lemma 5.1.5.
Let V ∈ Rep

(fg)
OL

(GK), set M := MK|L(V ) and Vm := V/πmL V as well as
Mm :=M/πmLM for m ∈ N.
Then the transition maps of the inverse systems (Vm)m, (Mm)m and (A⊗OL

Vm)m

are surjective and they have a continuous, set theoretical section. In particular, the
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short sequences

0 // A⊗OL
Vm

id⊗·πL// A⊗OL
Vm+1

// A⊗OL
V1 // 0,

0 //Mm
·πL //Mm+1

//M1
// 0

are exact and have continuous, set theoretical sections.

Proof.
Since MK|L is exact as an equivalence of categories (cf. Theorem 3.9.1) and the
tensor product is right exact, it is immediately clear that the transition maps of the
systems (Mm)m and (A⊗OL

Vm)m are surjective since the transition maps of (Vm)m
are.
Since the Vm are finite and discrete one can define a set theoretical section of
the canonical projection Vm+1 → Vm by choosing a preimage for every element in
Vm. Since Mm is a finitely generated AK|L-module, there are for every m ∈ N
isomorphisms of topological AK|L-modules

Mm
∼=

n(m)⊕
i=1

AK|L/π
n
(m)
i
L AK|L

such that n(m)
i ≤ n(m)

i+1 and the canonical projection Mm+1 →Mm maps the i-th com-

ponent of⊕n(m+1)

i=1 AK|L/π
n
(m+1)
i
L AK|L to the i-th component of⊕n(m)

i=1 AK|L/π
n
(m)
i
L AK|L

for i ≥ n(m) and is zero on the i-th component with i > n(m). With Lemma 5.1.3 we
then obtain a continuous, set theoretical section for every component, which then
also gives a continuous set theoretical section for Mm+1 →Mm.
As topological OL-module we have

A⊗OL
Vm ∼=

k(m)⊕
i=0

A/π
k
(m)
i
L A

and therefore we see that there exists a continuous, set theoretical section of the
canonical projection A⊗OL

Vm+1 → A⊗OL
Vm as above using Corollary 5.1.4 instead

of Lemma 5.1.3.
The statement on the short exact sequences then follows immediately.

Lemma 5.1.6.
Let E|L be a finite extension and HE = Gal(Qp|E∞) as usual. Then the operation of
HE on Esep

L is continuous with respect to the discrete topology on Esep
L .

Proof.
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Let x ∈ Esep
L . Then there exist a finite extension F|EE such that x ∈ F. Then

x is fixed by U := Gal(Esep
L |F) which is an open subgroup of HE . If then τ ∈ H

and y ∈ Esep
L are such that τ(y) = x, then Uτ × {y} is an open neighbourhood of

{τ} × {y} in HE ×Esep
L with σ(τ(y)) = x for all σ ∈ U .

Lemma 5.1.7.
Let V be a finite dimensional kL-representation of GK . Then there exists a finite
Galois extension E|K such that HE acts trivially on V .

Proof.
Since the action of GK on V is continuous, the homomorphism GK → AutkL(V ) is
continuous and since V is a finite dimensional kL-vector space, it is finite and so
AutkL(V ) carries the discrete topology, i.e. the kernel of the upper homomorphism is
open, which means that there exists a finite Galois extension E|K such that GE acts
trivially on V . With GE also HE acts trivially on V .

Lemma 5.1.8.
Let V be a finite dimensional kL-representation of GK and E|K a finite Galois
extension, such that HE acts trivially on V and set ∆ := Gal(E∞|K∞). Then ∆ acts
on the short exact sequence

0→ ωnφE
+
E ⊗kL V → EE ⊗kL V → EE/ω

n
φE

+
E ⊗kL V → 0

and it holds

1. Hj(∆,EE ⊗kL V ) = 0 for all j > 0.

2. There exists r ≥ 0 such that ωrφH
j(∆, ωnφE

+
E ⊗kL V ) = 0 for all j > 0 and

n ∈ Z.

Proof.
The proof is literally the same as the one of [Sch06, Lemma 2.2.10, p.20]

Lemma 5.1.9.
Let V be a finite dimensional kL-representation of GK and E|K a finite Galois
extension, such that HE acts trivially on V and set ∆ := Gal(E∞|K∞). Then we
have

1. (Esep
L ⊗kL V )HK ∼= (EE ⊗kL V )∆.

2. (ωnφE
sep,+
L ⊗kL V )HK ∼= (ωnφE

+
E ⊗kL V )∆ for all n ≥ 0.
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Proof.
In both cases the proof is the same. So let X be Esep

L or ωnφE
sep,+
L for some n ≥ 0.

Note that HK/HE
∼= ∆. We then get

(X ⊗kL V )HK = ((X ⊗kL V )HE )HK/HE = (XHE ⊗kL V )∆,

where the last equation is true, since HE acts trivial on V .

Before stating a corollary, we should introduce some notation. Since all projective
systems which appear here are indexed by the natural numbers, we will make the
following definitions only for projective systems indexed by natural numbers.

Proposition 5.1.10.
Let V be a finite dimensional kL-representation of GK and E|K a finite Galois
extension, such that HE acts trivially on V and set ∆ := Gal(E∞|K∞). Let in
addition M = MK|L(V ) and

Mn :=M/
(
ωnφE

sep,+
L ⊗kL V

)HK

.

Then we have

1. The inverse systems (Hj(∆, ωnφE
+
E ⊗kL V ))n and (Hj(∆,EE/ω

n
φE

+
E ⊗kL V ))n

are ML-zero for all j > 0.

2. The map of inverse systems (Mn)n → (H0(∆,EE/ω
n
φE

+
E ⊗kL V ))n is an ML-

isomorphism.

Proof.

1. Since V is a finite dimensional kL-vector space, it’s flat and therefore the
homomorphism ωn+1

φ E+
E ⊗kL V ⊆ ωnφE

+
E ⊗kL V is injective and induces a

homomorphism

Hj(∆, ωn+1
φ E+

E ⊗kL V )→ Hj(∆, ωnφE
+
E ⊗kL V ).

The image of this last homomorphism is a subset of ωφHj(∆, ωnφE
+
E ⊗kL V ), i.e.

the maps Hj(∆, ωkφE
+
E ⊗kL V )→ Hj(∆, ωnφE

+
E ⊗kL V ) are zero for k ≥ n+ r

(cf. Lemma 5.1.8, 2.), i.e. the inverse system (Hj(∆, ωnφE
+
E⊗kL V ))n is ML-zero

for j > 0.
Since every class in EE/ω

n
φE

+
E has a unique representative of highest degree

≤ n − 1 in ωφ the homomorphism EE → EE/ω
n
φE

+
E has a set theoretical
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splitting (by sending a class to this representative). This map is continuous,
since the preimage of a subset of EE in EE/ω

n
φE

+
E is equal to the image under

the canonical projection, which is open by definition. Since V is flat, the
sequence

0→ ωnφE
+
E ⊗kL V → EE ⊗kL V → EE/ω

n
φE

+
E ⊗kL V → 0

is exact and we can deduce a long exact cohomology sequence (cf. [NSW08,
(2.3.2) Lemma, p.106]) and since Hj(∆,EE ⊗kL V ) = 0 for j > 0 (cf. Lemma
5.1.8, 1.), the homomorphism

Hj(∆,EE/ω
n
φE

+
E ⊗kL V )→ Hj+1(∆, ωnφE

+
E ⊗kL V )

is an isomorphism for all j > 0 and the diagram

Hj(∆,EE/ω
n
φE

+
E ⊗kL V ) // Hj+1(∆, ωnφE

+
E ⊗kL V )

Hj(∆,EE/ω
n+1
φ E+

E ⊗kL V )

OO

// Hj+1(∆, ωn+1
φ E+

E ⊗kL V )

OO

commutes. This means that the transition map

Hj(∆,EE/ω
k
φE

+
E ⊗kL V )→ Hj(∆,EE/ω

n
φE

+
E ⊗kL V )

is zero for k ≥ n+r and therefore the inverse system (Hj(∆,EE/ω
n
φE

+
E⊗kLV ))n

is ML-zero.

2. As seen before, for every n ≥ 0 we have an exact sequence

0→ ωnφE
+
E ⊗kL V → EE ⊗kL V → EE/ω

n
φE

+
E ⊗kL V → 0.

Taking ∆-invariants then gives an exact sequence

0 // (ωnφE
+
E ⊗kL V )∆ // (EE ⊗kL V )∆ · · ·

· · · // (EE/ω
n
φE

+
E ⊗kL V )∆ // H1(∆, ωnφE

+
E ⊗kL V ) // 0,

where the last term is zero because Hj(∆,EE ⊗kL V ) = 0 for j > 0 (cf. Lemma
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5.1.8, 1.). With Lemma 5.1.9 this sequences becomes

0 // (ωnφE
sep,+
L ⊗kL V )HK // (Esep

L ⊗kL V )HK · · ·

· · · // (EE/ω
n
φE

+
E ⊗kL V )∆ // H1(∆, ωnφE

+
E ⊗kL V ) // 0

and then gives the following short exact sequence

0 // (Esep
L ⊗kL V )HK/(ωnφE

sep,+
L ⊗kL V )HK · · ·

· · · // (EE/ω
n
φE

+
E ⊗kL V )∆ // H1(∆, ωnφE

+
E ⊗kL V ) // 0.

In particular, H1(∆, ωnφE
+
E ⊗kL V ) is the cokernel of the homomorphism

Mn → (EE/ω
n
φE

+
E ⊗kL V )∆. According to the first part of the proof the

inverse system (H1(∆, ωnφE
+
E ⊗kL V ))n is ML-zero, and since the kernel of

Mn → (EE/ω
n
φE

+
E ⊗ V )∆ is zero it is also ML-zero, which then ends the proof.

Theorem 5.1.11.
Let V ∈ Rep

(fg)
OL

(GK) and set M = MK|L(V ). Then there are isomorphisms

H∗
cts(GK , V )

∼= // H∗
ϕK|L

(ΓK ,M),

H∗
cts(HK , V )

∼= // H∗
ϕK|L

(M).

These isomorphisms are functorial in V and compatible with restriction and corestric-
tion.

Proof. In this proof, we follow the proof of [Sch06, Theorem 2.2.1, p.702ff]

Step 1: Explaining the strategy.
First, for m ∈ N set Vm := V/πmL V and Mm := M/πmLM . Since MK|L is an
equivalence of categories (cf. Theorem 3.9.1) it is exact and therefore we have
Mm = MK|L(Vm). The open subgroups

Mm ∩
(
ωnφA

+ ⊗OL
Vm
)
=
(
ωnφA

+ ⊗OL
Vm
)HK

form a basis of neighbourhoods of 0 in Mm. These subgroups are clearly stable
under the operation of ΓK and since ϕK|L commutes with the operation of GK on



Chapter 5. Galois cohomology in terms of Lubin-Tate
(ϕ,Γ)-modules 129(

ωnφA
+ ⊗OL

Vm

)
these subgroups are also stable under ϕK|L. We then set

Mm,n :=Mm/
(
ωnφA

+ ⊗OL
Vm
)HK .

Since
(
ωnφA

+ ⊗OL
Vm

)HK

is an open subgroup, this is a discrete ΓK-module and
we have topological isomorphisms

Mm
∼= lim←−

n

Mm,n

M ∼= lim←−
m

Mm.

In Corollary 5.1.2 we proved that the sequence

0 // OL // A/ωnφA
+ Fr−id // A/ωnφA

+ // 0

is exact and since A/ωnφA
+ is a free OL-module, it is flat and therefore the sequence

0 // Vm // A/ωnφA
+ ⊗OL

Vm
Fr−id // A/ωnφA

+ ⊗OL
Vm // 0

is also exact. Then Lemma 2.3.3 says that for every m,n ≥ 1 we have a quasi
isomorphism

C•
cts(GK , Vm) // C•

Fr(GK , (A/ω
n
φA

+)⊗OL
Vm).

The inverse systems (Vm)m and ((A/ωnφA
+) ⊗OL

Vm)n,m have surjective tran-
sition maps. From Corollary 2.1.12 we then can deduce that also the inverse
systems of complexes (C•

cts(GK , Vm))m and C•
cts(GK , ((A/ω

n
φA

+) ⊗OL
Vm))n,m

have surjective transition maps and Lemma 2.3.8 then says that the system
C•
Fr(GK , ((A/ω

n
φA

+)⊗OL
Vm))n,m has surjective transition maps as well.

From the quasi isomorphism C•
cts(GK , Vm) → C•

Fr(GK , (A/ω
n
φA

+ ⊗ Vm)) we
then can deduce with Proposition 2.3.11 that the cohomologies of the com-
plexes lim←−n,m C•

Fr(GK , (A/ω
n
φA

+ ⊗OL
Vm)) and lim←−mC

•
cts(GK , Vm) coincide. Since

lim←−mC
•
cts(GK , Vm)

∼= C•
cts(GK , V ), the cohomology of lim←−mC

•
cts(GK , Vm) is

H∗
cts(GK , V ), which then is also computed by lim←−n,m C•

Fr(GK , (A/ω
n
φA

+⊗OL
Vm)).

On the other hand, since the canonical inclusion ι : Mm,n ↪→ (A/ωnφA
+)⊗OL

Vm

commutes with ϕK|L and since together with the canonical projection pr: GK � ΓK

it holds
ι(pr(σ)x) = σι(x)
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for all σ ∈ GK and x ∈Mm,n and since the operations of ϕK|L and GK respectively
ΓK commute wo get an induced morphism of complexes

αm,n : C
•
ϕK|L

(ΓK ,Mm,n)→ C•
Fr(GK , (A/ω

n
φA

+)⊗OL
Vm)

(cf. [NSW15, I §5, p45], the additional properties concerning ϕK|L we noted above,
ensure that we get the morphism of the above total complex with respect to ϕK|L

on the left hand side and Fr on the right hand side).
We now want to see that lim←−n,m αm,n is a quasi isomorphism. Because of
lim←−n,m C•

ϕK|L
(ΓK ,Mm,n) = C•

ϕK|L
(ΓK ,M) (cf. Lemma 2.3.7), this then says that

the cohomology of C•
ϕK|L

(ΓK ,M) and lim←−n,m C•
Fr(GK , (A/ω

n
φA

+⊗OL
Vm)) coincide.

But then the cohomologies of C•
ϕK|L

(ΓK ,M) and C•
cts(GK , V ) coincide, what is

exactly what we want to prove.
To see that lim←−n,m αm,n is a quasi isomorphism, it is enough to see, that lim←−n αm,n
is a quasi isomorphism for every m ≥ 1. Because if this is shown, one knows that
the inverse systems of complexes (C•

ϕK|L
(ΓK ,Mm))m and (C•

ϕK|L
(GK ,A⊗OL

Vm))m

are quasi isomorphic. Since the transition maps Mm+1 → Mm as well as
A⊗OL

Vm+1 → A⊗OL
Vm are surjective and have a continuous section (cf. Lemma

5.1.5), one can see as before, using Corollary 2.1.12 and Lemma 2.3.8, that the in-
verse systems of complexes (C•

ϕK|L
(ΓK ,Mm))m and (C•

ϕK|L
(GK ,A⊗OL

Vm))m have
surjective transition maps. As before with Proposition 2.3.11 respectively Remark
2.3.12 one then sees that lim←−m C•

ϕK|L
(ΓK ,Mm) and lim←−m C•

ϕK|L
(GK ,A⊗OL

Vm) are
quasi isomorphic.
So, what is still to show, is that lim←−n αm,n is a quasi isomorphism for every m ≥ 1.
This will be the rest of the proof.

Step 2: Reduction to the case m = 1.
Since for every m ≥ 1 the sequence

0 // Vm // Vm+1
// V1 // 0.

is exact and MK|L is an exact functor (since it is an equivalence), this implies that
for every m ≥ 1 there is a short exact sequence

0 //Mm
//Mm+1

//M1
// 0.

By the definition of the topology on the Mm it is clear, that the topology of Mm

is induced from that of Mm+1 and from Lemma 5.1.5 we deduce that it has a
continuous set theoretical section. Therefore Proposition 2.2.35 says that we get a



Chapter 5. Galois cohomology in terms of Lubin-Tate
(ϕ,Γ)-modules 131

long exact sequence of cohomology.
Now assume the result is shown for m = 1. Then H∗

ϕK|L
(ΓK ,M)→ H∗

cts(GK , V )

is an isomorphism for every V with πLV = 0. Induction on m and the 5-lemma
applied to the following diagram which arises from the long exact cohomology
sequences (where we write Γ = ΓK and G = GK and ϕ = ϕK|L)

Hl−1
ϕ (Γ,M1)

δ //

∼=
��

Hl
ϕ(Γ,Mm) //

∼=
��

Hl
ϕ(Γ,Mm+1) //

��

Hl
ϕ(Γ,M1)

δ //

∼=
��

Hl+1
ϕ (Γ,Mm)

∼=
��

H l−1
cts (G,V1)

δ // H l
cts(G,Vm) // H l

cts(G,Vm+1) // H l
cts(G,V1)

δ // H l+1
cts (G,Vm)

then implies the result for all m ≥ 1.

Step 3: Splitting α1,n up.
For the rest of the proof we may assume πLV = 0 and therefore also πLM = 0,
but we will still write M1,n to avoid confusion. Note that this implies

A⊗OL
V ∼= Esep

L ⊗kL V,

ωnφA
+ ⊗OL

V ∼= ωnφE
sep,+
L ⊗kL V

as well as the correspondingly isomorphism with respect to the fixed modules of
HK .
Now fix a finite Galois extension E|K such that HE acts trivially on V (cf. Lemma
5.1.7). Then, the canonical inclusion

M1,n =
(Esep

L ⊗kL
V )HK

(ωn
φE

sep,+
L ⊗kL

V )HK

� � // (Esep
L ⊗kL

V )HE

(ωn
φE

sep,+
L ⊗kL

V )HE
= EE/ω

n
φE

+
E ⊗kL V

induces together with the canonical projection Gal(E∞|K) � ΓK , as in step 1 for
αm,n, for all n ∈ N a morphism of complexes

βn : C
•
ϕK|L

(ΓK ,M1,n) // C•
Fr(Gal(E∞|K),EE/ω

n
φE

+
E ⊗kL V ).

Simultaneously, the canonical inclusion EE/ω
n
φE

+
E ⊗kL V ↪→ Esep

L /ωnφE
sep,+
L ⊗kL V

together with the canonical projection GK � Gal(E∞|K) induces for all n ∈ N a
morphism of complexes

γn : C
•
Fr(Gal(E∞|K),EE/ω

n
φE

+
E ⊗kL V ) // C•

Fr(GK ,E
sep
L /ωnφE

sep,+
L ⊗kL V ).



132 5.1. Descritption with ϕ

Since both diagramms

M1,n
� � //� u

''

EE/ω
n
φE

+
E ⊗kL V� _

��

ΓK Gal(E∞|K)oooo

Esep
L /ωnφE

sep,+
L ⊗kL V, GK

dddd OOOO

are commutative, where all the arrows in the left diagram are canonical inclusions
and the ones in the right diagram are canonical projections, it is immediately clear
that also the diagramm

C•
ϕK|L

(ΓK ,M1,n)
βn //

α1,n ++

C•
Fr(Gal(E∞|K),EE/ω

n
φE

+
E ⊗kL V )

γn

��
C•
Fr(GK ,E

sep
L /ωnφE

sep,+
L ⊗kL V )

commutes. So, to prove that lim←−n α1,n is a quasi-isomorphism it is enough to prove
that lim←−n βn and lim←−n γn are quasi-isomorphisms. In addition, we will also show
that γn is a quasi-isomorphism for every n ≥ 1.

Step 4: lim←−n γn is a quasi-isomorphism.
Due to Lemma 2.2.34 there is an E2-spectral sequence converging to the cohomology
of the source of γn

Ha(Gal(E∞|K),Hb
Fr(EE/ω

n
φE

+
E ⊗kL V )) +3

Ha+b
Fr (Gal(E∞|K),EE/ω

n
φE

+
E ⊗kL V )

as well as en E2-spectral sequence converging to the target of γn

Ha(Gal(E∞|K),Hb
Fr(HE ,E

sep
L /ωnφE

sep,+
L ⊗kL V )) +3

Ha+b
Fr (GK ,E

sep
L /ωnφE

sep,+
L ⊗kL V ).

The canonical inclusion EE/ω
n
φE

+
E ⊗kL V ↪→ Esep

L /ωnφE
sep,+
L ⊗kL V together with

the trivial map HE → 1 then induces a homomorphism on the above E2-pages.
Together with the from γn induced map on cohomology this then gives a morphism
of spectral sequences. So, to show that γn induces an isomorphism on cohomology
it is enough to show that the induced homomorphism on the above E2 pages
is an isomorphism. And for this it is enough, that the homomorphism between
the coefficients Hb

Fr(EE/ω
n
φE

+
E ⊗kL V ) and Hb

Fr(HE ,E
sep
L /ωnφE

sep,+
L ⊗kL V ) is an
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isomorphism. Since HE acts trivially on V it is (cf. Proposition 2.3.14)

Hb
Fr(EE/ω

n
φE

+
E ⊗kL V ) = Hb

Fr(EE/ω
n
φE

+
E)⊗kL V

Hb
Fr(HE ,E

sep
L /ωnφE

sep,+
L ⊗kL V ) = Hb

Fr(HE ,E
sep
L /ωnφE

sep,+
L )⊗kL V.

Therefore it is enough to show that there is an isomorphism between Hb
Fr(EE/ω

n
φE

+
E)

and Hb
Fr(HE ,E

sep
L /ωnφE

sep,+
L ). To see this, consider the commutative square

Hb
Fr(EE)

//

��

Hb
Fr(EE/ω

n
φE

+
E)

��
Hb

Fr(HE ,E
sep
L ) // Hb

Fr(HE ,E
sep
L /ωnφE

sep,+
L ),

where Esep
L is regarded as discrete HE-module (cf. Lemma 5.1.6) and where the

horizontal maps are induced from the respective canonical projections and the
vertical maps from the respective canonical inclusions.
First we want to see, that the upper horizontal map is an isomorphism. Hb

Fr(EE)

is computed by EE
ϕL−id−→ EE and Hb

Fr(EE/ω
n
φE

+
E) by the corresponding complex

and the square

EE
Fr−id //

����

EE

����
EE/ω

n
φE

+
E

Fr−id // EE/ω
n
φE

+
E

is commutative. Denote the kernel and image of the upper horizontal map by
κ1 and im1 and the ones of the lower vertical map by κ2 and im2 respectively.
By Lemma 5.1.1 the map ωnφE

+
E

Fr−id−→ ωnφE
+
E is an isomorphism, especially is

ωnφE
+
E ⊆ im1 and so we see immediately im2 ⊆ im1 /ω

n
φE

+
E . For the other inclusion

let x ∈ im1 /ω
n
φE

+
E and x ∈ EE a preimage under the canonical projection. Because

of ωnφE
+
E ⊆ im1 we deduce x ∈ im1. If y ∈ EE is a preimage of x under Fr − id,

then because of the commutativity of the latter diagram we get (Fr− id)(y) = x,
i.e. x ∈ im2. Therefore H1

Fr(EE) and H1
Fr(EE/ω

n
φE

+
E) coincide.

For the term in degree zero let x ∈ κ1 such that x ∈ ωnφE
+
E . Since Fr − 1 is an

isomorphism on ωnφE
+
E and (Fr − 1)(x) = 0, x itself is zero, i.e. the canonical

homomorphism κ1 → κ2 is injective. Let now η ∈ κ2 and y′ ∈ EE a preimage under
the canonical projection. By commutativity it is (Fr− 1)(y′) = 0 and therefore
(Fr− 1)(y′) ∈ ωnφE

+
E . Again since Fr− 1 is an isomorphism on ωnφE

+
E we find an

element y′′ ∈ ωnφE
+
E with (Fr − 1)(y′) = (Fr − 1)(y′′). Set y := y′ − y′′. Then

y = y′ − y′′ = y′ = η and (Fr − 1)(y) = 0, i.e. κ1 → κ2 is also surjective and
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therefore an isomorphism. Since every other cohomology group is zero, we conclude
that

Hb
Fr(EE)

∼= Hb
Fr(EE/ω

n
φE

+
E)

for all b ≥ 0.
For the lower horizontal map in the upper square, recall that Lemma 5.1.1 also
says that Fr− 1 is on ωnφE

sep,+
L an isomorphism. Therefore one sees with a similar

argument as above that the canonical projection Esep
L � Esep

L /ωnφE
sep,+
L induces an

isomorphism between the cohomology groups Hb′
Fr(E

sep
L ) and Hb′

Fr(E
sep
L /ωnφE

sep,+
L )

for all b′ ≥ 0. Lemma 2.2.24 states that there are two E2-spectral sequences
converging to H∗

Fr(HE ,E
sep
L ) respectively H∗

Fr(HE ,E
sep
L /ωnφE

sep,+
L ) (recall from the

beginning of Step 4 that Esep
L is considered as discrete HE-module):

Ha′(HE ,H
b′
Fr(E

sep
L ))⇒ Ha′+b′

Fr (HE ,E
sep
L )

Ha′(HE ,H
b′
Fr(E

sep
L /ωnφE

sep,+
L ))⇒ Ha′+b′

Fr (HE ,E
sep
L /ωnφE

sep,+
L ).

We conclude as before: The canonical projection Esep
L � Esep

L /ωnφE
sep,+
L induces

a morphism of spectral sequences and since the induced homomorphism is an
isomorphism on the E2-pages, we obtain an isomorphism between the limit terms
Hb

Fr(HE ,E
sep
L ) and Hb

Fr(HE ,E
sep
L /ωnφE

sep,+
L ) for all b ≥ 0.

To see that the left vertical arrow in the first square is an isomorphism we consider
the E2-spectral sequence (cf. Lemma 2.2.24)

Ha′
Fr(H

b′(HE ,E
sep
L ))⇒ Ha′+b′

Fr (HE ,E
sep
L ).

Since Esep
L is a separabel closure of EE with Galois group isomorphic to HE

it ist Hb′(HE ,E
sep
L ) = 0 for all b′ > 0. Then [NSW15, Chapter II §1, (2.1.4)

Proposition, p.100] says that we have an isomorphism Hb
Fr(EE)

∼= Hb
Fr(HE ,E

sep
L )

for all b ≥ 0 (here we identified H0(HE ,E
sep
L ) = (Esep

L )HE = EE), which is induced
from the canonical inclusion, i.e. the left vertical arrow in the first square also is an
isomorphism. Then also the right vertical arrow is an isomorphism (since all other
arrows are isomorphims) and so is the map on E2-terms from which we started.
Hence γn is a quasi-isomorphism for all n.
To see that lim←−n γn is an isomorphism, it remains to check that the transition
maps are surjective (cf. Proposition 2.3.11 respectively Remark 2.3.12). Since the
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transition maps

EE/ω
n+1
φ E+

E ⊗kL V // // EE/ω
n
φE

+
E ⊗kL V,

Esep
L /ωn+1

φ Esep,+
L ⊗kL V // // Esep

L /ωnφE
sep,+
L ⊗kL V

are surjective and the groups carry the discrete topology, Corollary 2.1.12 says that
also the transition maps

C•
cts(Gal(E∞|K),EE/ω

n+1
φ E+

E ⊗kL V ) // // C•
cts(Gal(E∞|K),EE/ω

n
φE

+
E ⊗kL V ),

C•
cts(GK ,E

sep
L /ωn+1

φ Esep,+
L ⊗kL V ) // // C•

cts(GK ,E
sep
L /ωnφE

sep,+
L ⊗kL V )

are surjective. But then Lemma 2.3.8 says that the transition maps

C•
Fr(Gal(E∞|K),EE/ω

n+1
φ E+

E ⊗kL V ) // // C•
Fr(Gal(E∞|K),EE/ω

n
φE

+
E ⊗kL V ),

C•
Fr(GK ,E

sep
L /ωn+1

φ Esep,+
L ⊗kL V ) // // C•

Fr(GK ,E
sep
L /ωnφE

sep,+
L ⊗kL V )

are surjective, too. Then Proposition 2.3.11 respectively Remark 2.3.12 say that
lim←−n γn is a quasi isomorphism.

Step 5: lim←−n βn is a quasi-isomorphism.
Now let ∆ := Gal(E∞ | K∞). Lemma 2.2.34 then says that there is an E2-spectral
sequence of inverse systems of abelian groups given by

Hi
Fr(ΓK ,H

j(∆,EE/ω
n
φE

+
E ⊗kL V )) +3 Hi+j

Fr (Gal(E∞|K),EE/ω
n
φE

+
E ⊗kL V ).

We will write nE
ij
2 for second page of this E2-spectral sequence, nE k for its limit

term and E ij
2 = lim←−n nE

ij
2 as wells as E k = lim←−n nE

k. Proposition 5.1.10 says that
the system (Hj(∆,EE/ω

n
φE

+
E ⊗kL V ))n is ML-zero for j > 0, i.e. for every n ∈ N

there is an m(n) ∈ N such that the transition map

Hj(∆,EE/ω
m(n)
φ E+

E ⊗kL V ) // Hj(∆,EE/ω
n
φE

+
E ⊗kL V )

is the zero map. For fixed n ∈ N and m(n) ∈ N as above, we then obtain that the
transition map

Cicts(ΓK ,H
j(∆,EE/ω

m(n)
φ E+

E ⊗kL V )) // Cicts(ΓK ,H
j(∆,EE/ω

n
φE

+
E ⊗kL V ))
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is also zero for all i ≥ 0 and j > 0. Then clearly the transition map

CiFr(ΓK ,H
j(∆,EE/ω

m(n)
φ E+

E ⊗kL V )) // CiFr(ΓK ,H
j(∆,EE/ω

n
φE

+
E ⊗kL V ))

is zero for all i ≥ 0 and j > 0, too. And so is the induced map on cohomology,
i.e the inverse systems (nE

ij
2 )n are ML-zero for all i ≥ 0 and j > 0. But then the

edge homomorphism E i0
2 → E i is an isomorphism, since E ij

2 = 0 for all i ≥ 0 and
j > 0 (cf. [NSW15, Chapter II, §1, (2.1.4) Corollary, p.100]). Recall that this edge
homomorphism is induced from both, the canonical projection Gal(E∞|K) � ΓK

and the canonical inclusion (EE/ω
n
φE

+
E ⊗kL V )∆ ↪→ EE/ω

n
φE

+
E ⊗kL V .

Proposition 5.1.10 says that (ηn)n : (M1,n)n → (H0(∆,EE/ω
n
φE

+
E ⊗kL V ))n is an

ML-isomorphism. Therefore the inverse systems (ker(ηn))n and (coker(ηn))n are
ML-zero. As above, we then deduce that also the systems (CiϕK|L

(ΓK , ker(ηn)))n and
(CiFr(ΓK , coker(ηn)))n are ML-zero for all i ∈ N0. Since H0(∆,EE/ω

n
φE

+
E ⊗kL V )

and M1,n carry the discrete topology for all n ∈ N, we deduce from Lemma 2.2.26,
which says that CiFr(ΓK ,−) is for discrete modules an exact functor, the exact
sequence

0 // CiϕK|L
(ΓK , ker(ηn)) // CiϕK|L

(ΓK ,M1,n)
Ci
Fr(ΓK ,ηn)· · ·

· · · // CiFr(ΓK ,H
0(∆,EE/ω

n
φE

+
E ⊗kL V )) // CiFr(ΓK , coker(ηn))

// 0.

Taking inverse limits then gives us an isomorphism of complexes

C•
ϕK|L

(ΓK ,M1) ∼= C•
Fr(ΓK ,H

0(∆,EE ⊗kL V )),

which, by construction, is induced from the canonical inclusion M1 ↪→ EE ⊗kL V
and which then prolongs to an isomorphism of its respective cohomology groups,
i.e. for all i ∈ N0 we get

Hi
ϕK|L

(ΓK ,M1) ∼= Hi
Fr(ΓK ,H

0(∆,EE ⊗kL V )).

Together with the observation from above, that the edge homomoprhism E i0
2 → E i

is an isomorphism for all i ∈ N0 we deduce for all i ∈ N0 the isomorphism

Hi
ϕK|L

(ΓK ,M1) ∼= Hi
Fr(Gal(E∞|K),EE ⊗kL V ),

which by construction is lim←−n βn.
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5.2 Description with ψ

In this section we want to give a description of the Galois cohomology groups of a
representation using a ψ-operator.

Definition 5.2.1.
Let A be an OL-module. We say that A is cofinitely generated if its Pontrjagin
dual A∨ = Homcts

OL
(A,L/OL) is finitely generated.

Remark 5.2.2.

1. Since finitely generated OL-modules together with their natural topology are com-
pact, cofinitely generated OL-modules are discrete, which means that
Homcts

OL
(−, L/OL) = HomOL

(−, L/OL) for both, finitely and cofinitely generated
OL-modules.

2. For n ∈ N we have an isomorphism

OL/π
n
LOL

// (OL/π
n
LOL)

∨

x mod πnLOL
� // [1 mod πnLOL 7→ π−nL x mod OL]

which then also implies a non-canocial isomorphism T ∼= T∨ for a finitely
generated torsion OL-module, since (−)∨ is compatible with finite direct sums.
These isomorphisms are clearly topological, since all these objects carry the
discrete topology.

3. Due to Pontrjagin duality (cf. Proposition 4.3.2) a cofinitely generated OL-
module is always the Pontrjagin dual of a finitely generated OL-module.

4. If T ∈ Rep
(fg)
OL

(GK) is torsion, then T∨ also is a finitely generated torsion
OL-module with a continuous action from GK .

Definition 5.2.3.
Let A be a cofinitely generated OL-module and n ∈ N. We denote by An the kernel
of the multiplication µπn

L
with πnL on A, i.e.

An = ker(µπn
L
: A→ A).

Proposition 5.2.4.
Let A be a cofinitely generated OL-module. Then we have A = lim−→n

An.
In particular, if A is torsion, say with πmL A = 0 for some m ∈ N, then we have
A = Am.
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Proof.
Let T be a finitely generated OL-module such that A = Homcts

OL
(T, L/OL), let

e1, . . . , em be a set of generators of T and let f ∈ A. Then for every i ∈ {1, . . . ,m}
there exists an ni ∈ N such that πni

L f(ei) = 0. Set n := maxini. Then it is πnLf(α) = 0

for every α ∈ A, i.e. f ∈ An.
In particular, if there exists m ∈ N such that πmL g = 0 for every g ∈ A, then the
above shows A = Am.

Lemma 5.2.5.
Let T ∈ Rep

(fg)
OL

(GK) such that πmL T = 0. Then HK acts continuously on A⊗OL
T

equipped with the discrete topology.

Proof.
Recall from page 57 that

A ∼= lim←−
n

Anr
L /π

n
LA

nr
L

and that HL is the Galois group of Anr
L |AL. The latter means, that HL acts

continuously on Anr
L with respect to the discrete topology because if x ∈ Anr

L , then
BL(x)|BL is a finite extension and therefore it exists an open subgroup U ≤ HL

which fixes x. But then (U, x) is an open subset of the preimage of x under the
operation

HL ×BL → BL.

Then HL also clearly acts continuously on Anr
L /π

n
LA

nr
L for all n ∈ N equipped with the

discrete topology. Since HK is an open subgroup of HL it then also acts continuously
on Anr

L /π
n
LA

nr
L for all n ∈ N equipped with the discrete topology. Because of πnLT = 0

we have T = T ⊗OL
OL/π

n
LOL and therefore

A⊗OL
T = A⊗OL

OL/π
n
LOL ⊗OL

T = A/πnLA⊗OL
T = Anr

L /π
n
LA

nr
L ⊗OL

T.

Since HK acts continuously on both T and Anr
L /π

n
LA

nr
L with respect to the discrete

topology it does so on the tensor product equipped with the linear topological
structure, which then again is discrete.

Lemma 5.2.6.
Let T ∈ Rep

(fg)
OL

(GK) such that πmL T = 0. Then we have H i
cts(HK ,A⊗OL

T ) = 0 for
all i > 0.

Proof.
This is [SV15, Lemma 5.2, p. 23–24], since it is even H i

cts(U,E
sep
L ) = 0 for all i > 0
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and open subgroups U ≤ HL.

Corollary 5.2.7.
Let A be a cofinitely generated OL-module with a continuous action from GK . Then
HK acts continuously on A⊗OL

A equipped with the discrete topology and we have
H i

cts(HK ,A⊗OL
A) = 0 for all i > 0.

Proof.
If A is torsion, then Remark 5.2.2 says that this is just Lemma 5.2.5 and Lemma
5.2.6.
If A is general, then with Proposition 5.2.4 we can write A = lim−→n

An, where the An
are torsion OL-modules. Since tensor products commute with colimits we have

lim−→
n

A⊗OL
An ∼= A⊗OL

A

algebraically. But the direct limit topology of lim−→n
A⊗OL

An again is discrete and so
the above isomorphism is also topological. Then, A⊗OL

A is a discrete HL-module
and therefore we deduce from [NSW15, (1.5.1) Proposition, p. 45–46]

H i(HK ,A⊗OL
A) = lim−→

n

H i(HK ,A⊗OL
An)

for all i ≥ 0. Since H i(HK ,A ⊗OL
An) = 0 for all i > 0 and n ∈ N we also have

H i(HK ,A⊗OL
A) = 0 for all i > 0.

Lemma 5.2.8.
Let A be a cofinitely generated OL-module. Then the sequence

0 // A // A⊗OL
A

Fr⊗id−id // A⊗OL
A // 0.

is exact and has a continuous set theoretical splitting, where all terms are equipped
with the discrete topology.

Proof.
Since A is a flat OL-module the first assertion comes from Lemma 5.1.1, the second
is obvious since all terms carry the discrete topology.

Proposition 5.2.9.
Let A be a cofinitely generated OL-module with a continuous action from GK . Then
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the exact sequence

0 // A // A⊗OL
A

Fr⊗id−id // A⊗OL
A // 0.

and the canonical homomorphism

(A⊗OL
A)HK �

� // C•
cts(HK ,A⊗OL

A)

induce quasi isomorphisms

C•
cts(HK , A)

' // C•
Fr(HK ,A⊗OL

A) C•
ϕK|L

(MK|L(A)).
'oo

Proof.
Since Fr commutes with the action from HK , the exact sequence

0 // A // A⊗OL
A

Fr⊗id−id // A⊗OL
A // 0.

clearly is an exact sequence of (discrete) HK-modules. Then Corollary 2.3.4 says that

H i
cts(HK , A) ∼= Hi

Fr(HK ,A⊗OL
A),

which is exactly the first quasi isomorphism. For the second quasi isomorphism it is
with Proposition 2.2.24 enough to show

H i
cts(HK ,A⊗OL

A) =

MK|L(A) , if i = 0

0 , else .

But this is exactly the above Corollary 5.2.7.

Corollary 5.2.10.
Let A be a cofinitely generated OL-module with a continuous action from GK . Then
the following sequence is exact

0 // H0
cts(HK , A) //MK|L(A)

ϕK|L−id
//MK|L(A) // H1

cts(HK , A) // 0.

Proof.
This is the long exact cohomology sequence of

0 // A // A⊗OL
A

Fr⊗id−id // A⊗OL
A // 0.
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combined with H1
cts(HK ,A⊗OL

A) = 0 from Corollary 5.2.7.

In the next step, we want to replace the above exact sequence with a sequence
of ΛK = OLJΓKK-modules. An idea how to do this gives Nekovář in [Nek07, (8.3.3)
Corollary, p. 159] but unfortunately the modules we are working with are not ind-
admissible, since A is no direct limit of finitely generated OL[GK ]-modules. As in the
proof of Theorem 5.1.11 we use limits and colimits to reduce to the case of discrete
coefficients.

We want to recall the notation from [Nek07, (8.1.1), p. 148; (8.2.1), p. 157] and
from the beginning of [Nek07, (8.3) Infinite extensions, p. 158–159].

Definition 5.2.11.
Let G be a profinite group, U ≤ G an open subgroup and M a discrete OL[U ]-module.
We then define the induced module to be

IndGU (M) := {f : G→ X | f(ug) = uf(g) for all u ∈ U, g ∈ G}.

IndGU (M) carries a G-action by (g · f)(σ) := f(σg). Furthermore, if M is a discrete
OL[G]-module define

UM := HomOL
(OL[G/U ],M).

UM then again carries a G-action by (σ · (f))(x) := σ(f(σ−1(x))).
Let now H/G be a closed, normal subgroup and U(G;H) be the open subgroups of G
containing H. Then, for V,U ∈ U(G;H) with V ⊆ U the canonical map G/V � G/U

induces OL-linear maps UM ↪→ VM under which the system (UM)U∈U(G;H) becomes
a filtered directed system. We then set

FG/H(M) := lim−→
U∈U(G;H)

UM.

Similar as above, FG/H(M) then also carries an action from G. If H = {1} we write
U(G) instead of U(G;H) and FG(M) instead of FG/{1}(M). Furthermore, we set
UK := U(GK ;HK) and we write FΓK

(M) instead of FGK/HK
. This can lead to an

abuse of notation, but it will be clear from the context, which construction is chosen.
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Remark 5.2.12.
For the above situation, Nekovář proves in [Nek07, (8.1.3), p. 149] that

IndGU (M) //
UM, f � //

[
gU 7→ g(f(g−1))

]
is a G-equivariant isomorphism.

Remark 5.2.13.
In the above situation, if f ∈ FG/H(M) then it exists U ∈ U(G;H) such that f ∈ UM .
If then V ∈ U(G;H) with V ⊆ U we also have f ∈ VM as well as

f(gV ) = f(gU)

for all g ∈ G.

Remark 5.2.14.
Let G be a group and H /G a normal subgroup such that G/H is abelian. Then every
subgroup U ≤ G with H ⊆ U is normal as well.
In particular, if additionally G is profinite and H is closed, then the elements of
U(G;H) are normal, open subgroups of G containing H. This is of great interest for
us, since our application of this theory will be G = GK and H = HK and G = ΓK

and H = {1}. In both cases, the factor G/H is ΓK which is abelian.

Proposition 5.2.15.
Let G be a profinite group, H / G a closed, normal subgroup, M a discrete OL[G]-
module and let U ∈ U(G;H). Then the compact-open topology on UM is discrete and
the G-action on UM is again continuous with respect to this topology.
Furthermore, the transition maps VM → V ′M for V, V ′ ∈ U(G;H) with V ′ ⊆ V

are injective, the direct limit topology on FG/H(M) is discrete and its G-action is
continuous.

Proof.
Since U ≤ G is an open subgroup, the set of cosetsG/U is finite and therefore OL[G/U ]

is a finitely generated free OL-module. So in particular, OL[G/U ] is compact. Then

UM = HomOL
(OL[G/U ],M) is discrete with respect to the compact open topology

since M is discrete. To see that the action from G is continuous on UM it is enough
to see that for every f ∈ UM there exists an open subset V ⊆ G under which f is
fixed. Note also that G acts by left multiplication on G/U . So, let f ∈ UM and let
g1, . . . , gn ∈ G be a set of representatives of the cosets of G/U . Since the action of
G on M is continuous and M carries the discrete topology, there exist open subsets
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V1, . . . , Vn ⊆ G such that gi is fixed by Vi for all 1 ≤ i ≤ n. Then f is fixed by
V := ∩iVi.
The statements on FG/H(M) follow immediately by taking the direct limit. So
the statement on the transition maps is left. Let V, V ′ ∈ U(G;H) with V ′ ⊆ V .
Then the canonical map G/V ′ → G/V is surjective. Then OL[G/V

′] → OL[G/V ]

is a surjective OL-linear homomorphism and since HomOL
(−,M) is left exact, the

induced homomorphism V ′M → VM is injective.

In the above situation, under the additional assumption that U is normal in G,
Nekovář introduces in [Nek07, (8.1.6.3) Conjugation, p. 151] an action from G/U on

UM which will be important for us. We recall this action in the following Remark
and we prove the statements.

Remark 5.2.16.
Let G be a profinite group, U / G be an open, normal subgroup and M a discrete
OL[G]-module. For g ∈ G and f ∈ IndGU (M) we define Ãd(g)(f) to be

(Ãd(g)(f))(σ) := g(f(g−1σ)).

This is an action from G on IndGU (M) which is trivial on U , i.e. it induces an action
from G/U on IndGU (M) which we will denote also by Ãd. Since both, IndGU (M) and
G/U carry the discrete topology, this action is continuous.
Furthermore, this action commutes with the standard action from G and under the
isomorphism IndGU (M) ∼= UM from Remark 5.2.12 it corresponds to the G/U -action

(Ãd(gU)(f))(σU) = f(σgU)

on UM . Then clearly the G-action on UM commutes with this action from G/U and
the latter is again continuous.

Proof.
Let f ∈ IndGU (M) and σ, g, x ∈ G. Then

(x · (Ãd(gU)(f)))(σ) = (Ãd(gU)(f))(σx)

= g(f(g−1σx))

= g((x · f)(g−1σ))

= (Ãd(gU)(x · f))(σ).
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Let α denote the isomorphism from Remark 5.2.12, i.e. α(f)(σU) = σ(f(σ−1)). Then

α((Ãd(gU)(f)))(σU) = σ((Ãd(gU)(f))(σ−1))

= σg(f(g−1σ−1))

= α(f)(σgU)

= (Ãd(gU)(α(f)))(σU).

Lemma 5.2.17.
Let G be a profinite group and H / G a closed, normal subgroup, such that G/H is
abelian. Then Ãd induces a continuous action from G/H on FG/H(M).
In particular, with this action FG/H(M) becomes an OLJG/HK-module.

Proof.
The action from G/H on FG/H(M) is given as follows: For f ∈ FG/H(M) and
U ∈ U(G;H) such that f ∈ UM and g ∈ G we have

Ãd(gH)(f) = Ãd(gU)(f).

This is well defined, since if V ∈ U(G;H) such that V ⊆ U then f ∈ VM and for
σ ∈ G we have

Ãd(gU)(f)(σU) = f(σgU) = f(σgV ) = Ãd(gV )(f)(σV ).

The action is continuous since the above f is fixed under U/H, which is an open
subgroup of G/H.
If f is as above, x ∈ OLJG/HK and prU : OLJG/HK→ OL[G/U ] denotes the canonical
projection, then we have

Ãd(x)(f) = Ãd(prU (x))(f).

This again is well defined and makes FG/H(M) into an OLJG/HK-module.

Proposition 5.2.18.
Let G be a profinite group and H / G a closed, normal subgroup such that G/H is
abelian. Then FG/H is an exact functor, viewed as functor from discrete
OL[G]-modules to discrete OLJG/HK[G]-modules.

Proof.
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The above Lemma 5.2.17 says that FG/H is a functor from discrete OL[G]-modules to
discrete OLJG/HK[G]-modules. So it is left to check that it is exact. For fixed
U ∈ U(G;H) the functor M 7→ UM from discrete OL[G]-modules to discrete
OL[G/U ][G]-modules is exact since OL[G/U ] is a finitely generated, free OL-module.
Since taking direct limits is exact as well, FG/H is exact.

Definition 5.2.19.
If C is an abelian category, we denote by D(C) the corresponding derived category.
As usual, we denote by D+(C) the full subcategory whose objects are the complexes,
which have no nonnegative entries and by Db(C) the full subcategory consisting
whose objects are the bounded below complexes.
If C• is a complex in an abelian category C, we denote as in [Nek07] by RΓ(C•) the
corresponding complex as an object in the derived category R(C).
In particular, if G is a profinite group and M is a topological G-module we set

RΓ•
cts(G,M) := RΓ(C•

cts(G,M))

as an object in R(Ab).

Remark 5.2.20.
Let G be a profinite group, H /G a closed, normal subgroup, and M a discrete OL[G]-
module. As in [Nek07, (3.6.1.4), p. 72] we define an action from G on C•

cts(H,M)

by
Ad(g)(c)(h0, . . . , hn) := g(c(g−1h0g, . . . , g

−1hng)),

where c ∈ Cncts(H,M). In loc. cit. Nekovář also proves that for h ∈ H this action is
homotopic to the identity and therefore induces an action from G/H on RΓ•

cts(H,M)

and H∗(H,M) respectively.
Similarly, by

C•
cts(G,FG/H(M))

Ãd(g)∗// C•
cts(G,FG/H(M))

Ad(g) // C•
cts(G,FG/H(M))

we can define an action from G on C•
cts(G,FG/H(M)). Note that in this situation

Ad(g) : C•
cts(G,FG/H(M))→ C•

cts(G,FG/H(M)) is homotopic to the identity and so
the complex RΓ•

cts(G,FG/H(M)) becomes a complex of OLJG/HK-modules. See also
Remark 5.2.23 below.
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Proposition 5.2.21.
Let G be a profinite group, H / G a closed, normal subgroup and M a discrete
OL[G]-module. Then there is a canonical morphism of complexes

C•
cts(G,FG/H(M))→ C•

cts(H,M),

which is a quasi isomorphism. Moreover, for g ∈ G the diagram

C•
cts(G,FG/H(M)) //

Ãd(g)
��

C•
cts(H,M)

Ad(g)

��

C•
cts(G,FG/H(M))

Ad(g)

��
C•
cts(G,FG/H(M)) // C•

cts(H,M)

is commutative. So in particular, the corresponding isomorphism
RΓ•

cts(G,FG/H(M))→ RΓ•
cts(H,M) in the derived category D+(OL-Mod) is G/H-

linear.

Proof.
For the proof set U := U(G;H). [NSW15, (1.5.1) Proposition, p. 45–46] says that we
have

C•
cts(G,FG/H(M)) ∼= C•

cts(G, lim−→
U∈U

UM) ∼= lim−→
U∈U

C•
cts(G, UM).

With Remark 5.2.12 we then obtain

lim−→
U∈U

C•
cts(G, UM) ∼= lim−→

U∈U
C•
cts(G, Ind

G
U (M)).

Shapiro’s Lemma (cf. [NSW15, (1.6.4) Proposition, p. 62–63]) and again [NSW15,
(1.5.1) Proposition, p. 45–46] then give us

lim−→
U∈U

C•
cts(G, Ind

G
U (M)) ' lim−→

U∈U
C•
cts(U,M) ∼= C•

cts( lim←−
U∈U

U,M) = C•
cts(H,M).
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[Nek07, (8.1.6.3), p. 151] says that for U ∈ U(G;H) and g ∈ G the diagram

C•
cts(G, Ind

G
U (M)) //

Ãd(g)
��

C•
cts(U,M)

Ad(g)

��

C•
cts(G, Ind

G
U (M))

Ad(g)
��

C•
cts(G, Ind

G
U (M)) // C•

cts(U,M)

is commutative. Taking direct limits then proves the commutativity of the desired
diagram.

Corollary 5.2.22.
Let M ∈Modét

ϕ,Γ(AK|L) such that M is discrete is OL[G]-module. Then the above
Proposition 5.2.21 together with Proposition 2.2.24 induces the ΓK-linear isomorphism

RΓ(C•
ϕK|L

(ΓK , FΓK
(M)))

∼= // RΓ(C•
ϕK|L

(M)).

Remark 5.2.23.
In the situation of Proposition 5.2.21, the morphism

Ad(g) : C•
cts(G,FG/H(M)) // C•

cts(G,FG/H(M))

for g ∈ G is homotopic to the identity (cf. [Nek07, (3.6.1.4), p. 72] respectively Remark
5.2.20) and therefore the diagram

RΓ•
cts(G,FG/H(M)) //

Ãd(g)∗
��

RΓ•
cts(H,M)

Ad(g)

��
RΓ•

cts(G,FG/H(M)) // RΓcts(H,M)

is commutative. The corresponding diagram for cohomology groups

H∗
cts(G,FG/H(M)) //

Ãd(g)∗
��

H∗
cts(H,M)

Ad(g)

��
H∗

cts(G,FG/H(M)) // H∗
cts(H,M)

then also is commutative. This then explains that the statement from [NSW15, p. 65]
coincides with the theory from Nekovář .
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Proposition 5.2.24.
Let A = lim−→m

Am be a cofinitely generated OL-module, where Am = ker(µπm
L
) as

usual, with a continuous action from GK and set

Amn := (A⊗OL
Am) /

(
πnLA

+ ⊗OL
Am
)

Mmn := (A⊗OL
Am)

HK /
(
πnLA

+ ⊗OL
Am
)HK .

Then the following diagram is commutative and each arrow in it is a quasi isomorphism.
Moreover, the vertical arrows on the right hand side are homomorphisms of ΛK-
modules.

C•
cts(HK , A) C•

cts(GK , FΓK
(A))

'oo

lim−→
m∈N

C•
cts(HK , Am)

'

��

'

OO

lim−→
m∈N

C•
cts(GK , FΓK

(Am))
'oo

'

��

∼=

OO

lim−→
m∈N

lim←−
n∈N

C•
Fr(HK ,Amn) lim−→

m∈N
lim←−
n∈N

C•
Fr(GK , FΓK

(Amn))
'oo

lim−→
m∈N

lim←−
n∈N

C•
ϕK|L

(Mmn)

'

OO

lim−→
m∈N

lim←−
n∈N

C•
ϕK|L

(ΓK , FΓK
(Mmn))

'oo

'

OO

lim−→
m∈N

C•
ϕK|L

(MK|L(Am))

∼=

OO

'
��

C•
ϕK|L

(MK|L(A)).

In particular, the induced isomorphism RΓ(C•
ϕK|L

(MK|L(A))) ∼= RΓ•
cts(GK , FΓK

(A))

in D+(OL-Mod) is ΛK-linear, i.e. it is an isomorphism in D+(ΛK-Mod).

Proof.
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We start with the left column and we consider the following diagram

C•
cts(HK , A)

lim−→
m∈N

C•
cts(HK , Am)

(2) '

��

(1) '

OO

lim−→
m∈N

C•
Fr(HK ,A⊗OL

Am)

(5)

∼=
))

lim−→
m∈N

lim←−
n∈N

C•
Fr(HK ,Amn)

lim−→
m∈N

lim←−
n∈N

C•
ϕK|L

(Mmn)

(7)'

OO

lim−→
m∈N

C•
ϕK|L

(MK|L(Am))

(6)

∼=
55

(4) '
��

(3) '

OO

C•
ϕK|L

(MK|L(A)).

That the morphisms (1) and (4) are quasi isomorphisms is well known (cf. eg. [NSW15,
(1.5.1) Proposition, p. 45–46]). (2) and (3) are quasi isomorphisms by Proposition
5.2.9. Proposition 2.3.7 says that (5) and (6) are isomorphisms of complexes. But
then (7) is also a quasi isomorphism. So, all the morphisms in the left column of the
original diagram are at least quasi isomorphisms. The horizontal morphisms are quasi
isomorphisms by Proposition 5.2.21 and therefore the morphisms in the right column
are also quasi isomorphisms. So it is left to check that the induced isomorphism
RΓ(C•

ϕK|L
(MK|L(A))) ∼= RΓ•

cts(GK , FΓK
(A)) is ΛK-linear. But the morphisms

lim−→
m∈N

C•
ϕK|L

(MK|L(Am)) // C•
ϕK|L

(MK|L(A))

and
lim−→
m∈N

lim←−
n∈N

C•
ϕK|L

(Mmn) // lim−→
m∈N

C•
ϕK|L

(MK|L(Am))

are clearly ΛK-linear and so are all the morphisms in the right column of the original
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diagram with respect to the ΛK-action induced by Ãd (which is the correct action in
the derived category according to Remark 5.2.23). Finally, the morphism

lim−→
m∈N

lim←−
n∈N

RΓ(C•
ϕK|L

(ΓK , FΓK
(Mmn))) // lim−→

m∈N
lim←−
n∈N

RΓ(C•
ϕK|L

(Mmn))

is ΛK-linear by Corollary 5.2.22.

This description now has the advantage that the objects of the complexes are
ΛK-modules which allows us to apply the theory of Matlis duality. We give a brief
overview of this theory.

Remark 5.2.25.
We have to consider different types of group actions on ΛK . First, ΓK acts by multipli-
cation and GK acts by multiplication through the natural projection
pr: GK � ΓK . Sometimes we also have to consider ΛK as ΛK-module via the
involution ι, i.e. ΓK then acts by γ ·x := γ−1x. If this is the case, we write ΛιK . Note
that this does also affect the action from GK , i.e. GK acts on ΛιK by g · x = pr(g)−1x

and ΓK acts by γ · x = γ−1x.
Additionally, if M is a ΛK-module, we denote by M ι the ΛK-module M where ΓK

acts via the involution ι, i.e. for all γ ∈ ΓK and m ∈M we have γ ·m = γ−1m. If
N is another ΛK-module we clearly have

HomΛK
(M,N ι) = HomΛK

(M ι, N).

Definition 5.2.26.
A ΛK-module with a ΛK-semilinear action of GK is a ΛK-module M with an action
from GK such that for all λ ∈ ΛK , m ∈M and g ∈ GK we have

g(λm) = g(λ)g(m) = pr(g)λg(m),

where pr: GK � ΓK denotes the canonical projection (cf. Remark 5.2.25).

Remark 5.2.27.
For us it feels more natural to consider ΛK-modules with a semilinear from GK-action
instead of ΛK-modules with a linear action from GK , which are considered in [Nek07].
The main reason for this is that if we consider modules with a linear action from
GK we would have to consider ΛK with the trivial action from GK . But this feels
unintuitive. In the text below we will always compare our results to the results of
Nekovář in [Nek07]. He considers ΛK with the trivial action of GK (cf. [Nek07,
(8.4.3.1) Lemma, p. 161–162]).
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Both concepts are linked in the following sense: If M is a ΛK-module with a (linear
or semilinear) action from GK , then for n ∈ Z denote by M < n > the ΛK-module
M with the GK-action given by

g ·m = pr(g)ng(m),

whith g ∈ GK and m ∈M and where g(m) denotes the given action of GK on M (cf.
[Nek07, (8.4.2), p. 161]). Then M 7→M < 1 > induces a morphism from ΛK-modules
with a linear action from GK to ΛK-modules with a semilinear action from GK . Its
inverse clearly is M 7→M < −1 >.

Remark 5.2.28.
Let M,N be ΛK-modules with a ΛK-semilinear action of GK . Then HomΛK

(M,N)

also carries actions from both GK and ΓK (respectively ΛK). The action from ΓK is
given by the multiplication of ΛK on N (respectively M since the homomorphisms
are ΛK-linear). The action from GK is given by

(g · f)(m) := gN (f(g
−1
M (m))),

for f ∈ HomΛK
(M,N) and m ∈M and where gM respectively gN denote the actions

from GK on M and N .

Remark 5.2.29.
Let T be a topological OL-module with a continuous action from GK and let M be a
ΛK-module with a ΛK-semilinear action of GK . Then ΓK acts on HomOL

(T,M) by
multiplication on the coefficients and GK as in the above Remark 5.2.28, i.e. by

(g · f)(t) := gM (f(g−1
T (t))),

for f ∈ HomOL
(T,M) and m ∈ M and where gT and gM denote the actions from

GK on T and M respectively.

Lemma 5.2.30.
Let T be a topological OL-module with a continuous action from GK and let M
be a ΛK-module with a ΛK-semilinear action of GK . Then the homomorphism of
OL-modules

HomOL
(T,M) // HomΛK

(T ⊗OL
ΛK ,M), f � // βf := [t⊗ x 7→ xf(t)]

is an isomorphism which respects the actions from ΓK and GK described in the above
Remark 5.2.29 for the left hand side and Remark 5.2.25 for the right hand side.
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Proof.
The inverse homomorphism is given by

HomΛK
(T ⊗OL

ΛK ,M) // HomOL
(T,M), h � // [t 7→ h(t⊗ 1)].

So it is left to check that the above homomorphisms respects the actions from ΓK and
GK . We start with the action from GK . For this, we have to check, that g ·βf = β(g·f)

holds for all g ∈ GK and f ∈ HomOL
(T,M). So take f ∈ HomOL

(T,M) and let
t ∈ T and x ∈ ΛK . For g ∈ GK we then get

(g · βf )(t⊗ x) = g(βf (g
−1(t⊗ x)))

= g(βf ((g
−1(t))⊗ (g−1(x))))

= g(g−1(x)f(g−1(t)))

= xgf(g−1(t))

= x(g · f)(t)

= β(g·f)(t⊗ x).

For the fourth line, note that GK acts semilinear on M . For the action of ΓK recall,
that ΓK acts on both sides by multiplication on the coefficients. For γ ∈ ΓK we then
get

(γ · βf )(t⊗ x) = γβf (t⊗ x)

= γxf(t)

= x(γf(t))

= x((γ · f)(t))

= β(γ·f)(t⊗ x).

Remark 5.2.31.
Let M be a ΛK-module with a ΛK-semilinear action of GK . Then M∨ = Homcts

OL
(M,L/OL)

also carries actions from GK and ΓK . Both are given by

(g · f)(m) = f(g−1(m)),

where g ∈ GK or in ΓK , f ∈M∨ and m ∈M .
Note that Nekovář considers the Pontrjagin dual of M with the ΓK-action without
the involution, i.e. by (γ · f)(m) = f(γ(m)) (cf. the proof respectively the result
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of [Nek07, (8.4.3.1) Lemma, p. 161–162]). In our notation the Pontrjagin dual of
Nekovář of M is (M∨)ι = (M ι)∨.

Lemma 5.2.32.
Let M be a ΛK-module with a ΛK-semilinear action of GK and n ∈ Z. Then the
identity of M∨ induces an isomorphism of ΛK-modules with a ΛK-semilinear action
of GK

(M < n >)∨ ∼=M∨ < n > .

Proof.
We have to check that the identity of M∨ is GK-linear with respect to the above
actions. So let g ∈ GK , m ∈ M and f ∈ M∨ and denote by pr: GK → ΓK the
canonical projection. For a clearer representation we index g by the module it acts
on, e.g. if we consider the action from g on M < n > we write gM<n>. On the left
hand side we have

(g(M<n>))∨ · f)(m) = f(g−1
M<n> ·m)

= f(pr(g)−ng−1
M (m)).

In the first line we used the definition of the action from GK on the Pontrjagin dual
from the above Remark 5.2.31 and in the second line we used the definition of < n >.
On the right hand side we have

(gM∨<n> · f)(m) = ((pr(g)n) · (gM∨ · f))(m)

= (pr(g)n · f)(g−1
M (m))

= f(pr(g)−ng−1
M (m)).

Definition 5.2.33.
Let M be a ΛK-module. The Matlis dual of M is defined as

DK(M) := HomΛK
(M,Λ∨

K).

This is a contravariant functor of ΛK-modules and maps finitely generated ΛK-
modules to cofinitely generated and vice versa.
ΛK acts on DK(M) by multiplication and if M has also a semilinear action from GK ,
then GK acts on DK(M) as described in the above Remark 5.2.28
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Remark 5.2.34.
Λ∨
K is an injective ΛK-module. Moreover, it is an injective hull of the residue class

field of ΛK as ΛK-module. Therefore DK is exact and for every finitely respectively
cofinitely generated ΛK-module the canonical homomorphism M → DK(DK(M)) is
an isomorphism.

Proof.
Since γ 7→ γ−1 defines an isomorphism of ΛK-modules ΛK → ΛιK , the first statement
is [Nek07, (8.4.3.2) Corollary, p. 162]. For this, note that in [Nek07, (8.4.3.1) Lemma,
p. 161–162] Nekovář proves that (Λ∨

K)
ι = (ΛιK)

∨ and Nekovář’s dualizing module
coincide and with (ΛιK)

∨ also Λ∨
K is a dualizing module. The second statement is

[BH98, Theorem 3.2.12, p. 105–107].

Remark 5.2.35.
As mentioned in [Nek07, (2.3.3, p. 41)] L/OL is an injective hull for kL. Therefore
we have a canonical isomorphism M ∼= HomOL

(HomOL
(M,L/OL), L/OL) for every

finitely or cofinitely generated OL-module M and HomOL
(−, L/OL) is an exact functor.

As above, the proof for this is [BH98, Theorem 3.2.12, p. 105–107].

We need some more notation from [Nek07].

Remark 5.2.36.
Let T ∈ Rep

(fg)
OL

(GK) and U ∈ UK . Then we have two group actions on
T ⊗OL

OL[GK/U ]. The first action, is the diagonal action from GK

g · (a⊗ xU) = (ga)⊗ (gxU).

The second action is the following action from GK/U :

Ãd(gU)(a⊗ xU) := a⊗ xg−1U.

The homomorphism
∑
axU ⊗ xU 7→

∑
axUδxU where δxU is the Kronecker delta-

function on GK/U (i.e. it is 1 for xU and zero otherwise) defines an isomorphism
between T ⊗OL

OL[GK/U ] and UT (cf. [Nek07, (8.1.3), p. 149; (8.2.1) p. 157]) under
which the actions described above coincide with the corresponding actions on UT (cf.
[Nek07, (8.1.6.3), p. 151]).

Definition 5.2.37.
Let T ∈ Rep

(fg)
OL

(GK). We set

FΓK
(T ) := lim←−

U∈UK

T ⊗OL
OL[GK/U ]
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together with the two actions from GK and ΓK described in the above Remark 5.2.36.
With this, we define

RΓ•
Iw(K∞|K,T ) := RΓ•

cts(GK ,FΓK
(T )).

Furthermore, by
L
⊗R we denote the derived tensor product over the ring R.

Remark 5.2.38.
At [Nek07, p. 201] Nekovář proves

H∗
Iw(K∞|K,T ) ∼= H∗(RΓ•

Iw(K∞|K,T )),

i.e. that the cohomology of the above complex coincides with the Iwasawa cohomology
defined in Definition 4.3.6.

Remark 5.2.39.
Let T ∈ Rep

(fg)
OL

(GK), then we have an isomorphism of ΛK-modules with a ΛK-
semilinear action of GK

FΓK
(T ) ∼= T ⊗OL

ΛιK .

Proof.
Since T is finitely generated and OL is a discrete valuation ring, T is finitely presented.
Therefore we have

lim←−
U∈UK

T ⊗OL
OL[GK/U ] = T ⊗OL

ΛK

as OL-modules. GK acts on both sides diagonally and ΓK acts on the left hand
side via Ãd (which technically means via the involution) on the right hand term
OL[GK/U ]. Since ΓK acts on ΛιK also via the involution, the claim follows.

Lemma 5.2.40.
We have an isomorphism of ΛK-modules with a ΛK-semilinear action of GK

(ΛιK)∨ ∼= FΓK
(L/OL)

(
= lim−→

U∈UK

HomOL
(OL[GK/U ], L/OL)

)
.

Proof.
OL[GK/U ] is compact for U ∈ UK , therefore HomOL

(OL[GK/U ], L/OL) is discrete
and so lim−→U∈UK

HomOL
(OL[GK/U ], L/OL) is discrete too. This means that every

map with source lim−→U∈UK
HomOL

(OL[GK/U ], L/OL) into any topological space is



156 5.2. Descritption with ψ

continuous. We then compute (as OL-modules)

Homcts
OL

(FΓK
(L/OL), L/OL) = Homcts

OL
( lim−→
U∈UK

HomOL
(OL[GK/U ], L/OL), L/OL)

=HomOL
( lim−→
U∈UK

HomOL
(OL[GK/U ], L/OL), L/OL)

∼= lim←−
U∈UK

HomOL
(HomOL

(OL[GK/U ], L/OL), L/OL)

∼= lim←−
U∈UK

OL[GK/U ]

=ΛK .

At the third equation, we used the identification

OL[GK/U ] ∼= HomOL
(HomOL

(OL[GK/U ], L/OL), L/OL)

from Remark 5.2.35. Now we head towards the action from ΓK . For γ ∈ ΓK ,
f ∈ Homcts

OL
(FΓK

(L/OL), L/OL) and h ∈ FΓK
(L/OL) we have

(γ · f)(h) = f(γ−1 · h) = f(Ãd(γ−1)h)

for all x ∈ FΓK
(L/OL). Going through the above isomorphisms shows that this

results in an action from ΓK on ΛK via the involution, i.e. we have an isomorphism
of ΛK-modules

Homcts
OL

(FΓK
(L/OL), L/OL) ∼= ΛιK .

With the above notation, we have for g ∈ GK

(g · f)(h) = f(g−1 · h) = f(h ◦ g),

since GK acts trivial on L/OL by definition. Therefore the above isomorphism is also
GK-linear.

Remark 5.2.41.
The above result differs a bit from Nekovář’s result in [Nek07, (8.4.3.1) Lemma,
p. 161–162] since Nekovář’s considers ΛK-modules with a ΛK-linear action from
GK and therefore he considers ΛK with a trivial GK action (cf. Remark 5.2.27).
Furthermore, his Pontrjagin dual and ours for ΛK-modules differ in the action of ΓK
by an involution (cf. Remark 5.2.31). For a better comparison, if we consider ΛK
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with the trivial action from GK the result of loc. cit in our notation is

(Λ∨
K)ι ∼= FΓK

(L/OL) < 1 > .

This is equivalent to
(Λ∨

K)ι < −1 >∼= FΓK
(L/OL)

and for the left hand side we obtain

(Λ∨
K)ι < −1 > = (ΛιK)∨ < −1 >

= (ΛιK < −1 >)∨

= ((ΛK < 1 >)ι)∨.

In the second line we used Lemma 5.2.32. But this means that Nekovář’s result
translate into ours since we considered ΛK with the action from GK given by the
canonical projection pr: GK � ΓK .

Lemma 5.2.42.
Let T ∈ Rep

(fg)
OL

(GK). Then we haven an isomorphism of ΛK-modules with a ΛK-
semilinear action of GK :

FΓK
(T∨) ∼= DK(FΓK

(T )).

Proof.
This proof follows the idea of [Nek07, (8.4.5.1) Lemma, p. 163].
We have

FΓK
(T∨) = lim−→

U∈UK

HomOL
(OL[GK/U ], T∨)

= lim−→
U∈UK

HomOL
(OL[GK/U ],HomOL

(T, L/OL))

∼= lim−→
U∈UK

HomOL
(OL[GK/U ]⊗OL

T,L/OL)

∼= lim−→
U∈UK

HomOL
(T,HomOL

(OL[GK/U ], L/OL)).

In the third and fourth line above we used the usual tensor-hom adjunction (cf.
Lemma 2.2.29). The above isomorphism is both, GK- and ΓK-linear. To see this, it
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is enough to show that for U ∈ UK the isomorphism

HomOL
(OL[GK/U ], T∨)

∼= // HomOL
(T,HomOL

(OL[GK/U ], L/OL))

f � // αf := [t 7→ [x 7→ f(x)(t)]]

is GK and GK/U -linear. We start with the action from GK . Let t ∈ T and
x ∈ OL[GK/U ]. Let furthermore f ∈ HomOL

(OL[GK/U ], T
∨) and g ∈ GK . The

action of GK on the left hand side is given by

(g · f)(x)(t) = g(f(g−1(x))(t)) = f(g−1(x))(g−1(t)).

Let h ∈ HomOL
(T,HomOL

(OL[GK/U ], L/OL)). Then the action of GK on the right
hand side is given by

(g · h)(t)(x) = g(h(g−1(t))(x)) = h(g−1(t))(g−1(x)).

Therefore we obtain

(g · αf )(t)(x) = αf (g
−1(t))(g−1(x))

= f(g−1(x))(g−1(t))

= (g · f)(x)(t)

= α(g·f)(t)(x).

For γ ∈ GK/U the action of GK/U on the left hand side is given by

(γ · f)(x)(t) = f(Ãd(γ−1)(x))(t)

and on the right hand side by

(γ · h)(t)(x) = γ(h(t)(x)) = h(t)(Ãd(γ−1(x))).

Analogously to the above computation we then obtain

(γ · αf )(t)(x) = αf (t)(Ãd(γ−1)(x))

= f(Ãd(γ−1)(x))(t)

= (γ · f)(x)(t)

= α(γ·f)(t)(x).

Then, as in [Nek07, (8.4.5.1) Lemma, p. 163], since T is finitely generated over OL,
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we have

lim−→
U∈UK

HomOL
(T,HomOL

((OL[GK/U ], L/OL)))

∼= HomOL
(T, lim−→

U∈UK

HomOL
(OL[GK/U ], L/OL)).

With the above Lemma 5.2.40, which says that we have an isomorphism of ΛK-modules
with a ΛK-semilinear action of GK lim−→U∈UK

HomOL
(OL[GK/U ], L/OL) ∼= (ΛιK)∨, we

then deduce

FΓK
(T∨) ∼= HomOL

(T, (ΛιK)∨)

∼= HomΛK
(T ⊗OL

ΛK , (Λ
ι
K)∨)

∼= HomΛK
(T ⊗OL

ΛιK ,Λ
∨
K)

∼= DK(FΓK
(T )).

In the second line we used Lemma 5.2.30, in the third line Remark 5.2.25 and in
the last Remark 5.2.39. The references for the second and last line also show that
the isomorphism is GK- and ΓK-linear. For the first line, this is part of this proof
and in the third line it is obvious. So the above homomorphism is both GK- and
ΓK-linear.

Remark 5.2.43.
Again, the above result differs slightly from the analogous result of Nekovář (cf. [Nek07,
(8.4.5.1) Lemma, p. 163]). This is a consequence of the difference pointed out in the
above Remark 5.2.41. Translated to our notation, Nekovář’s result from loc. cit. then
is that there is an isomorphism of ΛK-modules with a ΛK-semilinear action of GK

FΓK
((T∨)ι) ∼= HomΛK

(FΓK
(T )ι, (Λ∨

K)ι).

Note that Nekovář’s original result is formulated for ΛK-modules with a linear action
from GK . But as pointed out in Remark 5.2.27 both concepts are linked by the shifts
< 1 > and < −1 > respectively. So to be precise, Nekovář’s result is the above shifted
by < −1 >. If we apply this shift, we would have to invert it below in order to compare
Nekovář’s result to our result. Since ΓK acts trivially on T and therefore also on T∨

we have (T∨)ι = T∨ and we have a canonical isomorphism of ΛK-modules with a
ΛK-semilinear action of GK

HomΛK
(FΓK

(T )ι, (Λ∨
K)ι) = HomΛK

(FΓK
(T ),Λ∨

K) = DK(FΓK
(T )).
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Combining the above identifications then gives us an isomorphism of ΛK-modules with
a ΛK-semilinear action of GK

(FΓK
(T∨)) ∼= DK(FΓK

(T )),

which is exactly our result.

Lemma 5.2.44.
Let T ∈ Rep

(fg)
OL

(GK). We then have an isomorphism

RΓ•
Iw(K∞|K,T ) ∼= DK

(
RΓ•

cts(GK , FΓK
(T∨)(1))

)
[−2].

For the cohomology groups we then have for all i ≥ 0 an isomorphism of ΛK-modules

DK(H i
Iw(K∞|K,T )) ∼= H2−i

cts (GK , FΓK
(T∨(1))) ∼= H2−i

cts (HK , T
∨(1)).

Proof.
This is [Nek07, (8.11.2.2); (8.11.2.3), p. 201], but note that the shift of our complex is
outside DK(−) and that we have
FΓK

(T∨) ∼= DK(FΓK
(T )) (cf. Lemma 5.2.42) since we have a slightly different

convention for the involved action of ΓK . In particular, this is Lemma 5.2.42 together
with [Nek07, (5.2.6) Lemma, p. 92]. The last isomorphism of the cohomology groups
is Proposition 5.2.21.

Proposition 5.2.45.
Let T ∈ Rep

(fg)
OL

(GK). Then the sequence

0 // H1
Iw(K∞|K,T ) // DK (M)

DK(ϕK|L)−id
// DK (M) // H2

Iw(K∞|K,T ) // 0

is exact, where M = MK|L(T
∨(1)).

Proof.
With A := T∨(1) we deduce from Proposition 5.2.10 and Proposition 5.2.21 that the
sequence

0 // H0
cts(GK , FΓK

(A)) //MK|L(A)
ϕK|L−id

//MK|L(A) // H1
cts(GK , FΓK

(A)) // 0

is exact and Proposition 5.2.24 says that it is a sequence of ΛK-modules. Applying
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DK(−) then gives the exact sequence

0 // DK(H1
cts(GK , FΓK

(A))) // DK(MK|L(A))
DK(ϕK|L)−id

// · · ·

· · · // DK(MK|L(A)) // DK(H0
cts(GK , FΓK

(A))) // 0

(cf. Remark 5.2.34). Lemma 5.2.44 translates this sequence into the desired one.

This sequence looks similar to the sequence

0 // H1
Iw(K∞|K,T ) //MK|L(T (τ

−1))
ψ−id //MK|L(T (τ

−1)) // H2
Iw(K∞|K,T ) // 0

from Theorem 4.3.13 where τ−1 = χLTχ
−1
cyc and T ∈ Rep

(fg)
OL

(GK). In order to
compare these sequences, we prove the following.

Lemma 5.2.46.
Let n ∈ N. We have Ω1

AK|L
/πnLΩ

1
AK|L

= (AK|L/π
n
LAK|L)

∨ and a ΓK-linear inclusion

Ω1
AK|L

/πnLΩ
1
AK|L

� � // DK(AK|L/π
n
LAK|L)

Proof.
The isomorphism is a reformulation of Remark 4.2.16. For the inclusion using the
tensor-hom adjunction (cf. Lemma 2.2.29) we obtain

HomOL
(AK|L/π

n
LAK|L, L/OL) ∼= HomOL

(AK|L/π
n
LAK|L ⊗ΛK

ΛK , L/OL)

∼= HomΛK
(AK|L/π

n
LAK|L,HomOL

(ΛK , L/OL)).

So we have to check that under this isomorphism Homcts
OL

(AK|L/π
n
LAK|L, L/OL)

is sent to HomΛK
(AK|L/π

n
LAK|L, (ΛK)

∨). For this, recall the above isomorphism
precisely: Let f ∈ Homcts

OL
(AK|L/π

n
LAK|L, L/OL), then f is mapped to the element

[a 7→ fa := [λ 7→ f(λa)]]

in HomΛK
(AK|L/π

n
LAK|L,HomOL

(ΛK , L/OL)). For a ∈ AK|L/π
n
LAK|L the homo-

morphism fa then is the composition

ΛK // AK|L/π
n
LAK|L

f // L/OL

λ � // λa
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of continuous maps, i.e. fa is continuous too and we get the desired inclusion

Homcts
OL

(AK|L/π
n
LAK|L, L/OL)

� � // HomΛK
(AK|L/π

n
LAK|L, (ΛK)∨).

It is left to check this inclusion is ΓK-linear. For f ∈ Homcts
OL

(AK|L/π
n
LAK|L, L/OL)

as above, we denote by αf its image in HomΛK
(AK|L/π

n
LAK|L, (ΛK)∨). Let γ ∈ ΓK ,

a ∈ AK|L/π
n
LAK|L and λ ∈ ΛK . Then we have

(γ · αf )(a)(λ) = γ(αf (γ
−1(a))(λ))

= (f(γ−1aλ))

= (γ · f)(aλ)

= α(γ·f)(a)(λ).

In the first and the third line we used the definition of the action on the homomor-
phisms. In the second line we used that ΓK acts trivially on L/OL by definition.

Definition 5.2.47.
Let M be a toplogical AK|L-module with a continuous and semilinear action from
ΓK . We define

D(M) := HomAK|L(M,Ω1
AK|L

⊗AK|L BK|L/AK|L).

And we define the ΓK-action on D(M) to be

(γ · f)(m) := γ(f(γ−1(m))),

where ΓK acts diagonal on the tensor product.

Remark 5.2.48.
By Proposition 4.2.29 we can identify D(M), for M as above, with

HomAK|L(M,BK|L/AK|L(χLT)).

Lemma 5.2.49.
Let M be a discrete AK|L-module with a continuous and semilinear action from ΓK

such that M = lim−→m
Mm where Mm = ker(µπm

L
). Then we have a ΓK-linear inclusion

D(M) �
� // DK(M).

Proof.



Chapter 5. Galois cohomology in terms of Lubin-Tate
(ϕ,Γ)-modules 163

For m ∈ N we obtain with the tensor-hom adjunction (cf. Lemma 2.2.29)

DK(Mm) ∼= HomΛK
(Mm, (ΛK)∨)

∼= HomΛK
(Mm ⊗AK|L AK|L/π

m
LAK|L, (ΛK)∨)

∼= HomAK|L(Mm,HomΛK
(AK|L/π

m
LAK|L/, (ΛK)∨)).

Lemma 5.2.46 then implies, that there is an inclusion

HomAK|L(Mm,Ω
1
AK|L

/πmL Ω1
AK|L

) �
� // DK(Mm).

But since πmLMm = 0 it is

HomAK|L(Mm,Ω
1
AK|L

/πmL Ω1
AK|L

) = HomAK|L(Mm,Ω
1
AK|L

⊗AK|L BK|L/AK|L),

i.e. we have an inclusion D(Mm) ↪→ DK(Mm). Since HomR(−, X) commutes
with limits for arbitrary rings R and R-modules X, we get the desired inclusion
D(M) ↪→ DK(M) by applying limits.

Lemma 5.2.50.
Let A be a cofinitely generated OL-module with a continuous action from GK . Then
we have

D(MK|L(A)) ∼= MK|L(A
∨(χLT)).

This isomorphism respects the action from ΓK .

Proof.
As usual we write A = lim−→m

Am with Am = ker(µπm
L
). Lemma 4.2.17 then says that

we have an isomorphism

D(MK|L(Am)) ∼= MK|L(Am)
∨.

Proposition 4.2.35 implies that this isomorphism is ΓK-linear. Remark 4.3.4 says
that we have a ΓK-linear isomorphism

MK|L(Am)
∨ ∼= MK|L((Am)

∨(χLT)).

Combining these results gives us the ΓK-linear isomorphism

D(MK|L(Am)) ∼= MK|L((Am)
∨(χLT)).

Applying limits now gives the desired result.
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In the Proposition below, we are using a result of Section 4. Since K|L was
unramified in this chapter, we also have from now on to assume that K|L is unramified.

Proposition 5.2.51.
Let T ∈ Rep

(fg)
OL

(GK) and set

C•
ψ(MK|L(T (τ

−1))) := C•
D(ϕ)(D(MK|L(T

∨(1)))[−1].

Then the inclusion of complexes

C•
ψ(MK|L(T (τ

−1))) �
� // C•

DK(ϕ)
(DK(MK|L(T

∨(1))))[−1]

DK(C•
ϕ(MK|L(T

∨(1))))[−2]

is a quasi isomorphism. So in particular we have an isomorphism in the derived
category Db(ΛK −Mod)

RΓ(C•
ψ(MK|L(T (τ

−1)))) ∼= RΓ•
Iw(K∞|K,T ).

Proof.
With T∨(1) = T (−1)∨, the above Lemma 5.2.49 and Lemma 5.2.50 imply

MK|L(T (τ
−1)

∼= // D(MK|L(T
∨(1)) �

� // DK(MK|L(T
∨(1)).

The cited lemmata also show that both homomorphisms are ΓK-linear. Let
M := MK|L(T

∨(1)) then Proposition 5.2.45 together with Theorem 4.3.13 implies the
commutative diagram with exact rows and ΛK-linear vertical homomorphisms

0 // H1
Iw(K∞|K,T ) // DK (M)

DK(ϕ)−id // DK (M) // H2
Iw(K∞|K,T ) // 0

0 // H1
Iw(K∞|K,T ) //MK|L(T (τ

−1))
?�

OO

ψ−id //MK|L(T (τ
−1)) //

?�

OO

H2
Iw(K∞|K,T ) // 0.

This gives the desired quasi isomorphism. The second statement then follows from
Lemma 5.2.44 by using Proposition 5.2.24.
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Theorem 5.2.52.
Let T ∈ Rep

(fg)
OL

(GK) and let K ⊆ K ′ ⊆ K∞ an intermediate field, finite over K, such
that ΓK′ := Gal(K∞|K ′) is isomorphic to some Zrp. Then we have an isomorphism
in the derived category D+(OL-Mod)

RΓ•
Iw(K∞|K,T )

L
⊗ΛK′ OL

∼= RΓ•
cts(GK′ , T ).

In particular, we have

RΓ(C•
ψ(MK|L(T (τ

−1)))
L
⊗ΛK′ OL

∼= RΓ•
cts(GK′ , T ).

Proof.
The first assertion is [Nek07, (8.4.8.1) Proposition, p. 168]. Note that we have
an isomorphism RΓ•

Iw(K∞|K ′, T ) ∼= RΓ•
Iw(K∞|K,T ) in D+(ΛK′-Mod) since the

intermediate fields of K∞|K ′ are cofinal in the intermediate fields of K∞|K. The
second assertion then is an application of Proposition 5.2.51.

Remark 5.2.53.
It is maybe possible the generalize the above Theorem 5.2.52 to the case of general ΓK .
For classical (ϕ,Γ)-modules one proves the analogous statement first for procyclic
and then for general Γ (cf. [Col04, Proposition 5.3.11, Corollary 5.3.12, Proposition
5.3.13, Proposition 5.3.14, p. 101–103]).

The above Theorem 5.2.52 gives the desired comparison of continuous cohomology
of a representation T with a complex of (ϕK|L,ΓK)-modules related to the operator
ψ. Unfortunately, the above statement is only for the continuous cohomology of a
subgroup of GK . The following Corollary manipulates the given representation to
get the continuous cohomology of the whole group GK . In fact, this is an application
of Shapiro’s Lemma.

Corollary 5.2.54.
Let T ∈ Rep

(fg)
OL

(GK) and let K ⊆ K ′ ⊆ K∞ an intermediate field, finite over K, such
that ΓK′ := Gal(K∞|K ′) is isomorphic to some Zrp. Then we have an isomorphism
in the derived category D+(OL-Mod)

RΓ•
Iw(K∞|K,T )

L
⊗ΛK′ OL

∼= RΓ•
cts(GK , T ⊗OL

OL[GK/GK′ ]).

Proof.
Recall from Remark 5.2.36 the object T ⊗OL

OL[GK/GK′ ] together with the diagonal
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action from GK . Since OL[GK/GK′ ] is a finite free OL-module we then get an
isomorphism in D+(OL-Mod) (cf. [Nek07, (8.2.2), p. 158] and Remark 2.3.12)

RΓ•
cts(GK , T ⊗OL

OL[GK/GK′ ]) ∼= lim←−
n∈N

RΓ•
cts(GK , T/π

n
LT ⊗OL

OL[GK/GK′ ])

∼= lim←−
n∈N

RΓ•
cts(GK′ , T/πnLT )

∼= RΓ•
cts(GK′ , T ).

Together with Theorem 5.2.52 this is exactly the claim.

Remark 5.2.55.
We want to give a more concrete statement of the above Theorem 5.2.52. So let as
there T ∈ Rep

(fg)
OL

(GK) and K ⊆ K ′ ⊆ K∞ an intermediate field, finite over K, such
that ΓK′ := Gal(K∞|K ′) is isomorphic to some Zrp. Let furthermore γ1, . . . , γr be a
set of generators of ΓK′ . The Koszul-complex K•(ΛK′) of ΛK′ then is the complex

0 //
∧r ΛK′

dr //
∧r−1 ΛK′

dr−1 // · · · // ΛK′
d1 // OL // 0,

where
∧i ΛK′ denotes the i-th exterior algebra of ΛK′ and

di(x1 ∧ · · · ∧ xi) =
i∑

j=1

(−1)j+1pr(xj)x1 ∧ · · · ∧ x̂j ∧ · · · ∧ xi.

Here (̂−) denotes that this entry is omitted and pr denotes the projection
ΛK′ � ΛK′/(γ1 − 1, . . . , γr − 1) ∼= OL (cf. [Sta18, Section 15.28]). Under the
(uncanonical) isomorphism ΛK′ → OLJX1, . . . , XrK, γi− 1 7→ Xi the above projection
becomes the projection to degree zero. Then by [Mat87, Theorem 16.5, p. 128–129] the
Koszul-complex K•(ΛK′) of ΛK′ is a free resolution of OL and therefore (cf. [Sta18,

Section 15.57, Definition 15.57.15]) RΓ(C•
ψ(MK|L(T (τ

−1)))
L
⊗ΛK′ OL is represented

by the complex
(C•
ψ(MK|L(T (τ

−1)))⊗ΛK′ K•(ΛK′)

which then is isomorphic to the complex

Tot
(
MK|L(T (τ

−1))⊗ΛK′ K•(ΛK′)
(ψ−id)⊗id //MK|L(T (τ

−1))⊗ΛK′ K•(ΛK′)
)
∼=

Tot
(
K•(MK|L(T (τ

−1)))
K•(ψ)−id // K•(MK|L(T (τ

−1)))
)
.
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Here K•(MK′|L(T (τ
−1))) denotes the Koszul-complex of MK′|L(T (τ

−1)) which is
defined in an analogous way to the Koszul-complex of ΛK′ . This last complex then is
the generalization of the ψ-Herr complex from the classical theory.





Chapter 6

Regulator Maps

In this chapter, we want to define a regulator map, similar to the one in [LZ14a,
Definition 4.6, p. 16] and deduce similar properties as in loc. cit. in the following.
Besides [LZ14a] (and its previous version [LZ14b]) our main reference for this chapter
will be [SV19].

6.1 Notation

We keep the notations from the previous chapters and introduce some new notations,
similar to the one of [LZ14a] which will be useful in order to imitate the concepts
from there.
First we want to mention that deviant from the previous chapters, we will henceforth
denote representations over rings of integers by the letter T while we use V for
the corresponding representation over the corresponding quotient field. We do this,
because we wanted the notation to be consistent with the other articles in this field.
As in [LZ14a, p. 6] we will work in this chapter mainly with free representations. The
category of finitely generated and free OL-representations of GK will be denoted by
Rep

(fg,f)
OL

(GK). Due to the equivalence of Theorem 3.9.1, the (ϕK|L,ΓK)-modules
of interest will be those which are finitely generated free as AK|L-modules and we
denote the corresponding category by Modét,f

ϕ,Γ(AK|L).
Let F be a fixed unramified extension of L, Fn|F be unramified of degree pn and
let F∞ = ∪nFn. Note that Fn is uniquely determined. Denote the Galois group of
F∞|F by Υ and the one of Fn|F by ΥFn|F . Note that since Fn|F is unramified, its
Galois group is isomorphic to the Galois group of the extension of the corresponding
residue class fields and therefore it is ΥFn|F

∼= Z/pnZ. This Galois group is generated
by the lift of the qF -Frobenius from the residue class extension and will be denoted
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by σFn . It clearly is σFn |Fn−1 = σFn−1 for all n ≥ 1. Let Furthermore OFn be the
ring of integers of Fn and OF∞ = ∪nOFn .
We want to assemble the whole situation in the following diagram:

Qp

F∞L∞

F∞ L∞

Fn

Ln

F

Υ

ΥFn|F

L

ΓL

Remark 6.1.1.
Don’t be confused by the notation, when comparing this section to [LZ14a]. In [LZ14a,
Proof of Proposition 3.6, p. 10–11] they define U to be the Galois group of F∞/Qp and
Un to be the one of F∞|Fn. But since the groups Un do not occur in our applications,
but the groups U/Un do, we decided to let our ΥFn|F be their U/Un to simplify notation
and to be consistent with the definitions we made in previous section (e.g. we defined
ΓLn|L = Gal(Ln|L) at the beginning of Section 3.1).

Since we will consider different Iwasawa algebras below, we want to establish the
following notation: If G is a profinite group and R a commutative ring, we set

ΛR(G) := lim←−
H/G

R[G/H],

where the projective limit runs over all open normal subgroups of G. If R is a
topological ring, we endow R[G/H] with the product topology and ΛR(G) with the
topology of the projective limit. Sometimes, this is called the weak topology (cf.
[LZ14a, p. 3]).

6.2 Crystalline and Analytic Representations

In this section we want to give a brief overview over some more of Fontaine’s period
rings and on de Rham and crystalline representations. Since the proofs in our situation
are the same as the corresponding ones in [FO10, Chapter 5 and 6, p. 135–198], we
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will not give a full proof of any of the statements but we will explain how the
constructions from loc. cit. transform to our situation. Most of the rings appeared
first in [Col02]. But to be consistent with the notation and to simplify comparisons,
our main references will be [Sch17] and [FO10].

From [Sch17, Lemma 1.4.18, p. 53–55] we deduce the surjective homomorphism

ΘOC[p
: W (OC[

p
)L // OC[

p

and in [Sch17, Lemma 2.1.3, p. 86] Schneider proves that its kernel is generated by
the element ξ := τ(π̃L)− πL, where

τ : OC[
p

//W (OC[
p
)L, x

� // (x, 0, . . . )

is the usual Teichmüller Lift (cf. [Sch17, Lemma 1.1.15, p. 15–16]) and
π̃L = (πn mod πLOCp)n ∈ OC[

p
with π0 = πL and πqLn+1 = πn for all n ≥ 0 (cf.

[Sch17, p. 85]). As in [FO10, p. 92] ΘOC[p
then clearly extends to a surjective homo-

morphism W (OC[
p
)L[1/πL] → C[p which we again denote by ΘOC[p

. Its kernel then
again is generated by ξ. We then define

B+
dR := lim←−

n∈N
W (OC[

p
)L[1/πL]/(ξ)

n,

BdR := B+
dR[1/ξ].

Remark 6.2.1.
In [Col02, Proposition 7.12, p. 61] Colmez shows that the above defined ring B+

dR

coincides with the classical de Rham period ring, defined by

lim←−
n∈N

W (OC[
p
)/(ξ̃)n,

where ξ̃ generates the kernel of the surjective homomorphism W (OC[
p
) → OC[

p
(cf.

[FO10, Definition 5.13, p. 93]). Note that Colmez denotes the classical ring by B+
dR

and our ring defined above by B+
dR,L. Since they coincide, this justifies our notation.
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Remark 6.2.2.
The operation from GL on W (OC[

p
) carries over to BdR and we have (cf. [FO10,

Proposition 5.24, p. 96])
(BdR)

GL = L.

The role of the element πε = [ε] − 1 from [FO10, p. 79] in our situation plays
the element ωφ. In particular, it fulfills ΘOC[p

(ωφ) = 0 (cf. [Sch17, Lemma 2.1.12,

p. 91–92]). Therefore, analogously to [FO10, p. 94], we define

tLT := logLT(ωφ) ∈ B+
dR

As in [FO10, Proposition 5.20, p. 94–95] one then can check that tLT generates the
maximal ideal of B+

dR, using v(ω) = qL
qL−1 from [Sch17, Lemma 1.4.14, p. 50].

Following [FO10, Definition 6.1p. 113–114] we then define

A0
cris :=

{
N∑
n=0

an
ξn

n!

∣∣∣∣∣N ∈ N0, an ∈W (OC[
p
)

}
,

Acris := lim←−
n∈N

A0
cris/p

nA0
cris,

B+
cris := Acris

[
1

p

]
.

One then can show (cf. [FO10, Proposition 6.6, p. 115]) that there exists another
generator t of the maximal ideal of BdR such that t ∈ Acris. Then we can make the
same definition as in [FO10, Definition 6.7, p. 115], i.e. we set

Bcris := B+
cris

[
1

t

]
= Acris

[
1

t

]
.

Remark 6.2.3.
As before, the action from GL restricts to Bcris and we have

(Bcris)
GL = L0.

As usual, we define

Acris,L := Acris ⊗OL0
OL,

B+
cris,L := B+

cris ⊗L0 L,

Bcris,L := Bcris ⊗L0 L.
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One can show tLT ∈ Bcris,L. For V ∈ Rep
(fg)
L (GL) we then also define

DdR(V ) =
(
BdR ⊗Qp V

)GL

Dcris(V ) =
(
Bcris ⊗Qp V

)GL

Dcris,L(V ) = (Bcris,L ⊗L V )GL = (Bcris ⊗L0 V )GL

Then DdR(V ) is an L-vector space and we have (cf. [FO10, p. 98])

dimLDdR(V ) ≤ dimQp(V ).

Similarly, Dcris(V ) is an L0-vector space and it is (cf. [FO10, p. 131])

dimL0 Dcris(V ) ≤ dimQp(V ).

If in the above line holds equality, we say the representation V is crystalline. Clearly,
Dcris,L(V ) is an L-vector space with

dimLDcris,L(V ) ≤ dimL0 Dcris(V ) ≤ dimQp(V ).

We also want to recall some notation from [SV19]. For this, recall from [FO10, p. 99]
that for V ∈ Rep

(fg)
L (GL) the K-vector space DdR(V ) has a filtration, which we will

denote by FiliDdR(V ) and as in [FO10, p. 100] we set

FiliDdR(V ) = FiliDdR(V )/Fili+1DdR(V ).

The Hodge-Tate weights of V then are the i ∈ Z with griDdR(V ) 6= 0. We say
that V is positive if all the Hodge-Tate weights are ≤ 0. Furthermore, we say that
V is analytic if the filtration on DdR(V )m is trivial for every maximal ideal m of
L⊗Qp L which is not the kernel of the homomorphism L⊗Qp L→ L induced by the
multiplication. We denote the full subcategory of Rep

(fg)
L (GL) of crystalline and

analytic representations by Repcris,an
L (GL).

A free OL-representation T ∈ Rep
(fg,f)
OL

(GL) is called crystalline respectively an-
alytic respectively positiv if V := T ⊗OL

L = T [1/πL] is crystalline respectively
analytic respectively positive. The corresponding full subcategory of Rep

(fg,f)
OL

(GL)

of crystalline and analytic OL-representations is denoted by Repcris,an
OL

(GL).

Furthermore, set Qφ :=
[πL]φωφ

ωφ
and for a finite extension K|L we denote by

Modan
ϕ,Γ(A

+
K|L) the category consisting of finitely free A+

K|L-modules N , together



174 6.2. Crystalline and Analytic Representations

with a ϕK|L-linear homomorphism ϕN : N → N [1/Qφ] such that

1⊗ ϕN : A+
K|L ϕK|L ⊗A+

K|L
N [1/Qφ]→ N [1/Qφ]

is an isomorphism and with a semilinear ΓK-action, commuting with ϕN such that the
induced action on N/ωφN is trivial. We call such a module an analytic (ϕK|L,ΓK)-
module over A+

K|L.
Let X|Qp be a finite extension and E|X be an extension, such that E is complete.
Let furthermore W be an n-dimensional X-vector space and B ⊆ W be a closed
polydisk, i.e. there exists a w ∈W and an s > 0 such that

B = {b ∈W | ||b− w|| ≤ s}.

For W = Xn we could choose OnX for B, where OX is the ring of integers of X (this
will be the most interesting of our applications, especially in the case n = 1). A
function f : B → E is called locally X-analytic (with values in E), if for every
b ∈ B there exists an r > 0 and a convergent power series fb ∈ XJX1, . . . , XnK such
that

f(a+ b) = fb(a)

for all a ∈ B with ||w − b||W ≤ r. In our applications X will be L or Qp. Note that
a locally Qp-analytic function needs not to be locally L-analytic. We will denote the
E-vector space of all E-valued locally X-analytic functions on B by CX-an(B,E).
We then also get the notion of locally X-analytic functions on Lie groups over X by
an analogous definition locally on the charts. If G is a Lie group over X, we denote
by DX(G,E) the continuous dual of the E-vector space CX-an(G,E), i.e.

DX(G,E) = Homcts
E (CX-an(G,E), E).

DX(G,E) is called the space of E-valued locally X-analytic distributions on
G. As in [LZ14a, p. 3] we endow DX(G,E) with the topology of the inverse limit.
The most interesting case for us will be when G is (a subgroup of) the group of units
of the ring of integers OX of X.

Remark 6.2.4.
Let E|Qp be an extension, such that E is complete. We want to recall from [LZ14a,
p. 3] a way to think of the Iwasawa algebra and the distributions in one of the cases
we are interested in. Let G ∼= ∆ × Znp , where ∆ is a finite abelian group. Let
γ1, . . . , γn denote a set of generators of the Znp factor. Then ΛOE

(G) is isomorphic
to OE [∆]JX1, . . . , XnK via sending γi − 1 to Xi. The space DQp(G,E) then identifies
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with the subring of E[∆]JX1, . . . , XnK consisting of those power series converging on
the disk |Xi| < 1.

6.3 On Integral Normal Bases

In their course of proving [LZ14a, Theorem 4.7, p. 16–17], they need a special
description for integral normal bases and of the normal bases of the corresponding
residue class fields. Since these results are split over three different sources, we collect
them here and add some details. First, we fix some notation and then fill in some
details in the original proof of the important input, which is [Wae91, p. 203–204].

Definition 6.3.1.
Let E|F be an extension of degree t of finite fields of characteristic p, let q be the
cardinality of F , let x ∈ E and denote by σ the q-Frobenius on both, E and F . The
polynomials f ∈ F [X] with f(σ)(x) = 0 are called the annihilating polynomials
of x with respect to σ.
Furthermore, we call an element x ∈ E a normal basis generator of E|F if
(x, σ(x), . . . , σt−1(x)) is a F -basis of E.

Remark 6.3.2.
Let E|F be an extension of degree t of finite fields of characteristic p, let q be the
cardinality of F , let x ∈ E and denote by σ the q-Frobenius on both E and F . Then
the annihilating polynomials of x with respect to σ clearly form an ideal and therefore,
since F [X] is a principal ideal domain, it exists a unique monic generator of this
ideal. We call this generator the minimal polynomial of x with respect to σ

and denote it by fx. Note that these minimal polynomials need not to be irreducible.

Now we want to fill in a detail into [Wae91, p. 203–204], precisely we want to give a
proof of the next-to-last sentence in the proof. The idea of this is to imitate to prove
at [Wae91, p. 126] as it is stated on top of [Wae91, p. 204].

Lemma 6.3.3.
Let E|F be an extension of degree t of finite fields of characteristic p, let q be the
cardinality of F , let x, y ∈ E and denote by σ the q-Frobenius on both E and F . If
fx and fy are relatively prime, then we have fxfy = fx+y. In particular, if f ∈ F [X]

such that f(σ)(x+ y) = 0 then f(σ)(x) = f(σ)(y) = 0.

Proof.
Since (fxfy)(σ) is additive we have

(fxfy)(σ)(x+ y) = (fxfy)(σ)(x) + (fxfy)(σ)(y) = 0
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and therefore fx+y | fxfy by definition. Let g ∈ F [X] such that fx+yg = fxfy.
Now let P ∈ F [X] be a prime divisor of fx and let e ∈ N be the biggest exponent
of P such that P e | fx. Since fx and fy are relatively prime, we have P - fy. Then
clearly

(fx/P
n)(σ)(x) 6= 0

for all 1 ≤ n ≤ e and with P - fy we obtain

((fxfy)/P
n)(σ)(x+ y) = ((fxfy)/P

n)(σ)(x) 6= 0

for all 1 ≤ n ≤ e. We show now, that we then already have P e | fx+y. Let f ∈ N0

with f ≤ e which is the biggest exponent of P such that P f | fx+y. This means that
P e−f | g and therefore

0 = (fx+yg/P
e−f )(σ)(x+ y) = ((fxfy)/P

e−f )(σ)(x+ y) = ((fxfy)/P
e−f )(σ)(x).

So we get (fx/p
e−f )(σ)(x) = 0 and therefore e = f . Imitating this for all prime

divisors of fx and fy then implies fx | fx+y and fy | fx+y and since fx and fy are
relatively prime also fxfy | fx+y.

The statement of [Wae91, p. 203–204] is summarized at [Sem89, Lemma 1, p. 507],
which we want to recall here.

Lemma 6.3.4.
Let E|F be an extension of degree t of finite fields of characteristic p, let q be the
cardinality of F denote by σ the q-Frobenius on both E and F . Then an element
x ∈ E is a normal basis generator if and only if the minimal polynomial of x with
respect to σ is Xt − 1.

[Sem89, Lemma 4.1, p. 518] is also one input, we need. We state it here and explain
the details.

Lemma 6.3.5.
Let E|F be an extension of degree t = pr of finite fields of characteristic p, let q be the
cardinality of F and denote by σ the q-Frobenius on both E and F . Then an element
x ∈ E is a normal basis generator if and only if TrE|F (x) 6= 0.
If t is not a power of p and x ∈ E is a normal basis generator, then we still have
TrE|F (x) 6= 0.

Proof.
Let x ∈ E be a normal basis generator and t not necessarily a power of p. Since
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TrE|F is a polynomial of degree t− 1 in σ it immediately follows from Lemma 6.3.4
that TrE|F (x) 6= 0 (since its minimal polynomial with respect to σ has degree t).
For the other direction, let t = pr and x ∈ E such that TrE|F (x) 6= 0. We then have

Xpr − 1 = (X − 1)p
r
=

(
pr−1∑
i=0

Xi

)
(X − 1).

Since σpr = idE and TrE|F (x) 6= 0 and since X − 1 is the only prime divisor of
Xpr − 1, it immediately follows that Xpr − 1 is the minimal polynomial of x with
respect to σ.

Then, [Pic18, Theorem 4.12, p. 22] proves in some cases that there are also integral
normal bases. Unfortunately, we have from now on to assume p 6= 2.

Theorem 6.3.6.
Let M |L be a finite, unramified extension with Galois group G and [M : L] = pr for
some r ∈ N. Let x ∈ OM such that TrOM |OL

(x) 6≡ 0 mod πL, then x is an integral
normal basis generator, i.e. (g(x) | g ∈ G) is an OL-basis of OM and x mod πL is a
normal basis generator of the extension kM |kL.

Proof. This is [Pic18, Theorem 4.12, p. 22].

6.4 Yager Modules

In this section, we follow the idea of [LZ14a, Section 3.2, p. 10–11]. Precisely, we
follow the earlier version [LZ14b, Section 3.2, p. 7–11] which contains more details
and which imitates the construction of [Yag82, §2]. We add some details and explain
how this fits in our situation.

Definition 6.4.1.
As in [LZ14b, p. 7], on the ring OFn [ΥFn|F ] we define the following group actions from
ΥFn|F :

∆1 : ΥFn|F × OFn [ΥFn|F ]
// OFn [ΥFn|F ]

(h,
∑

g∈ΥFn|F

xg · g) � //
∑

g∈ΥFn|F

h(xg) · g,

∆2 : ΥFn|F × OFn [ΥFn|F ]
// OFn [ΥFn|F ]

(h,
∑

g∈ΥFn|F

xg · g) � //
∑

g∈ΥFn|F

xg · (hg) =
∑

g∈ΥFn|F

xh−1g · g.
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The following Remark lists the properties of the above group actions, which are
analogous to the ones listed in [LZ14b, p. 7].

Remark 6.4.2.
For every h ∈ ΥFn|F the induced map ∆1(h,−) on OFn [ΥFn|F ] is an automorphism
of rings, but in general it is not OFn-linear (though it is OL-linear). The induced map
∆2(h,−) is OFn-linear but it is in general no homomorphism of rings.
Furthermore, ∆1 and ∆2 commute with each other, in the sense that for every
h, k ∈ ΥFn|F and r ∈ OFn [ΥFn|F ] we have

∆1(k,∆2(h, r)) = ∆2(h,∆1(k, r)).

Proof.
Let h ∈ ΥFn|F . That both, ∆1(h,−) and ∆2(h,−), are additive is clear since addition
in OFn [ΥFn|F ] is just adding the coefficients. For the multiplicativity of ∆1(h,−) let∑
xg · g and

∑
yg · g be in OFn [ΥFn|F ] and compute

∆1

h,
 ∑
g∈ΥFn|F

xg · g

 ·
 ∑
g∈ΥFn|F

yg · g


= ∆1

h, ∑
g∈ΥFn|F

∑
ab=g

xayb

 · g


=
∑

g∈ΥFn|F

h

∑
ab=g

xayb

 · g
=

∑
g∈ΥFn|F

∑
ab=g

h(xa)h(yb)

 · g
=

 ∑
g∈ΥFn|F

h(xg) · g

 ∑
g∈ΥFn|F

h(yg) · g


= ∆1

h, ∑
g∈ΥFn|F

xg · g

∆1

h, ∑
g∈ΥFn|F

yg · g

 .

To show that ∆1(h,−) is an automorphism of OFn [ΥFn|F ] it then remains to show
that ∆1(h,−) is bijective. But this is clear, since h is an automorphism of OFn and
∆1(h,−) only acts on the coefficients. It is not OFn-linear, because if x ∈ OFn \OFn−1
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then we have h(x) 6= x if h 6= id and therefore

∆1(h, x · id) = h(x) · id 6= x · id = x(∆1(h, 1 · id)).

It clearly is OL-linear, since the restriction of ΥFn|F to OL is, by definition, trivial.
For the OFn-linearity of ∆2(h,−) let

∑
xg ·g ∈ OFn [ΥFn|F ] and y ∈ OFn and compute

∆2

h, y ∑
g∈ΥFn|F

xg · g

 = ∆2

h, ∑
g∈ΥFn|F

yxg · g


=

∑
g∈ΥFn|F

yxg · (hg)

= y
∑

g∈ΥFn|F

xg · (hg)

= y∆2

h, ∑
g∈ΥFn|F

xg · g

 .

To see that ∆2(h,−) is not multiplicative in general, take a, b ∈ ΥFn|F and compute

∆2(h, 1 · ab) = 1 · hab

as well as
∆2(h, 1 · a)∆2(h, 1 · b) = h2ab

which are equal if and only if h = id.
To see that ∆1 and ∆2 commute, take h, k ∈ ΥFn|F and

∑
xg · g ∈ OFn [ΥFn|F ] and

compute

∆1

k,∆2

h, ∑
g∈ΥFn|F

xg · g

 = ∆1

k, ∑
g∈ΥFn|F

xg · (hg)


=

∑
g∈ΥFn|F

k(xg) · (hg)

= ∆2

h, ∑
g∈ΥFn|F

k(xg) · g


= ∆2

h,∆1

k, ∑
g∈ΥFn|F

xg · g

 .
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Next, we want to define a map analogous to the map yK|F from [LZ14a, Definition
3.4, p.10] respectively y from [LZ14b, Definition 3.2, p. 7].

Definition 6.4.3.
We define the following map

µn : OFn
// OFn [ΥFn|F ]

x � //
∑

g∈ΥFn|F

g−1(x) · g.

Lemma 6.4.4.
The map µn is additive, injective and OF -linear but it is not OFn-linear in general.

Proof.
That µn is additive is clear since g ∈ ΥFn|F is an automorphism on OFn and the
addition on OFn [ΥFn|F ] is defined by adding the coefficients. It also clearly is injective,
since µn(x) = 0 implies g(x) = 0 for all g ∈ ΥFn|F which is only true for x = 0.
For y ∈ OF it is g(y) = y for all g ∈ ΥFn|F by definition. Therefore we clearly have

g(yx) = yg(x)

for all x ∈ OFn , i.e. µn is OL-linear.
To see that µn is not OFn-linear in general, let y ∈ OFn \ OFn−1 and recall from the
Proof of the above Remark 6.4.2 g(y) 6= y for g 6= id. For 0 6= x ∈ OFn we then obtain

g(yx) = g(y)g(x) 6= yg(x)

which immediately implies µn(yx) 6= yµn(x).

Following [LZ14b, p. 7] we define the OL-submodule of OFn [ΥFn|F ] in which the
actions from Definition 6.4.1 coincide. At [LZ14a, p. 10] is also a description of this,
though it is less formal.

Definition 6.4.5.
We define

Sn :=
(
OFn [ΥFn|F ]

)∆1=∆2 .

and equip Sn with the subspace topology of OFn [ΥFn|F ], where OFn [ΥFn|F ] itself
carries the product topology of the πL-adic topology on OFn .
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Remark 6.4.6.
Because of Remark 6.4.2 the automorphisms ∆1(h,−) for h ∈ ΥFn|F of OFn [ΥFn|F ]

then restrict to automorphisms of Sn. Note that these automorphisms are topological.
With Corollary 6.4.8 this is immediately clear.
The automorphism ∆1(σFn ,−) will be called the Frobenius of Sn.

Remark 6.4.7.
For every n ∈ N, the πL-adic topology on OL[Υn] coincides with the product topology
of the πL-adic topology on OL.
The analogous statement holds true for OFn [ΥFn|F ].

Proof.
With ng ∈ N0 for g ∈ Υ we have

π
min{ng}
L OL[Υn] ⊆

∏
g∈ΥFn|F

π
ng

L OL · g ⊆ π
max{ng}
L OL[Υn],

which proves that the two topologies coincide.
The proof for OFn [ΥFn|F ] is the same.

Corollary 6.4.8.
For every n ∈ N, the topology on Sn is the πL-adic topology.

Proof.
We will show that for every m ∈ N0 we have

πmL Sn = (πmL OFn [ΥFn|F ]) ∩ Sn.

The inclusion πmL Sn ⊆ (πmL OFn [ΥFn|F ]) ∩ Sn is obvious. Now let h ∈ ΥFn|F . Then
Remark 6.4.2 says that ∆1(h,−) is OL-linear and ∆2(h,−) is even OFn-linear. Let
x ∈ OFn [ΥFn|F ] such that πmL x ∈ (πmL OFn [ΥFn|F ]) ∩ Sn. Then we have

πmL∆1(h, x) = ∆1(h, π
m
L x) = ∆2(h, π

m
L x) = πmL∆2(h, x).

Since OFn [ΥFn|F ] is a torsion free OL-module we then deduce

∆1(h, x) = ∆2(h, x).

So we have x ∈ Sn and πmL x ∈ πmL Sn. The claim then follows immediately from the
above Remark 6.4.7.
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Lemma 6.4.9.
Multiplication within OFn [ΥFn|F ] induces a map OF [Υn] × Sn → Sn by which Sn

becomes an OF [Υn]-module. Moreover, the additive map µn from Definition 6.4.3
induces an isomorphism of the OF [Υn]-modules OFn and Sn, which respects the
Frobenii on both sides, i.e. we have

µn(σFn(x)) = ∆1(σFn , µn(x))

for all x ∈ OFn.

Proof.
With Lemma 6.4.4 it remains to show, that µn is OF [Υn]-linear and its image is Sn.
We start with computing the image of µn.
Let x ∈ OFn and h ∈ ΥFn|F . Then

∆1(h, µn(x)) = ∆1

h, ∑
g∈ΥFn|F

g−1(x) · g


=

∑
g∈ΥFn|F

hg−1(x) · g

=
∑

g∈ΥFn|F

(h−1g)−1(x) · (hh−1g)

=
∑

g∈ΥFn|F

g−1(x) · (hg)

= ∆2

h, ∑
g∈ΥFn|F

g−1(x) · g


= ∆2(h, µn(x)).

So, the image of µn is contained in Sn. For the other inclusion let
∑
xg · g ∈ Sn and

h ∈ ΥFn|F . Since the actions ∆1 and ∆2 coincide on Sn by definition, we obtain that

∑
g∈ΥFn|F

xg · g =
∑

g∈ΥFn|F

xg · (hh−1g)
∆1=∆2=

∑
g∈ΥFn|F

h(xg) · (h−1g)=
∑

g∈ΥFn|F

h(xhg) · g,

i.e. that h(xhg) = xg for all g ∈ ΥFn|F which is equivalent to xhg = h−1(xg) for all
g ∈ ΥFn|F and implies in particular xh = h−1(x1). Therefore we get∑

g∈ΥFn|F

xg · g =
∑

g∈ΥFn|F

g−1(x1) · g = µn(x1).
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Since µn by Lemma 6.4.4 is additive and OF -linear it remains to show that it also is
ΥFn|F -linear. For x ∈ OFn and h ∈ ΥFn|F , we compute similar as before

µn(h(x)) =
∑

g∈ΥFn|F

g−1(h(x)) · g =
∑

g∈ΥFn|F

hg−1(x) · g = ∆1(h, µn(x)),

where we use at the second equality that ΥFn|F is abelian. The statement on the
Frobenii then is the computation above with h = σFn .

Lemma 6.4.10.
OFn is for each n ∈ N a free rank 1 module over OF [ΥFn|F ].

Proof.
As mentioned in the proof of [LZ14b, Proposition 3.5, p. 8], this is a consequence of
Theorem 6.3.6:
Since Fn|F is unramified of degree pn, Theorem 6.3.6 says that there is an element
xn ∈ OFn which is a normal basis generator of Fn|F , i.e. (g(xn) | g ∈ ΥFn|F ) is an OF -
basis of OFn . Then every element of OFn can be written in the form

∑
g∈ΥFn|F

agg(xn),
with ag ∈ OF , i.e. the OF [ΥFn|F ]-linear map.

OF [ΥFn|F ]
// OFn ,

∑
g∈ΥFn|F

ag · g � //
∑

g∈ΥFn|F

agg(xn)

is bijective.

Corollary 6.4.11.
For every n ∈ N, the πL-adic topology on OFn and its topology as OF [ΥFn|F ]-module
coincide.

Proof.
This now is an immediate consequence of Lemma 6.4.10 and Remark 6.4.7.

Corollary 6.4.12.
For every n ∈ N, the isomorphism of OL[ΥFn|F ]-modules µn : OFn → Sn is topological
and the canonical inclusion Sn ↪→ OFn [ΥFn|F ] has closed image.

Proof.
Corollary 6.4.8 and Corollary 6.4.11 together say that the isomorphism between OFn

and Sn induced from µn is topological. Since OFn is compact with respect to the
πL-adic topology, Sn is compact as well and so is its image in OFn [ΥFn|F ], which then
also is closed, since OFn [ΥFn|F ] is a Hausdorff space.
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Remark 6.4.13.
Note that the above Corollary 6.4.12 says that Sn is compact, since OFn is compact
and µn is a topological isomorphism.

The next step is to see that the Sn give rise to an inverse system. Due to the above
Lemma 6.4.9 this is equivalent to that the OFn form an inverse system with respect
to the trace maps. For this, we prove [LZ14b, Proposition 3.3, p. 7–8] in our case.
Denote by Ξn the Galois group of Fn|Fn−1 and let Trn denote the trace map from
OFn to OFn−1 , i.e.

Trn : OFn
// OFn−1 , x

� //
∑
g∈Ξn

g(x).

Note that Trn induces a homomorphism OFn [ΥFn−1|F ]→ OFn−1 [ΥFn−1|F ] by applying
to the coefficients. Furthermore, recall that the canonical projection prn : ΥFn|F �

Υn−1 induces a homomorphism of rings

OFn [ΥFn|F ]
// OFn [ΥFn−1|F ],

∑
g∈ΥFn|F

xg · g � //
∑

h∈Υn−1

 ∑
g∈ΥFn|F

g≡h

xg

 · h,
which we also will denote by prn.

Remark 6.4.14.
The trace map Trn commutes with the corresponding Frobenii, i.e. for every n ∈ N
we have

Trn ◦ σFn = σFn−1 ◦ Trn.

Proof.
This follows immediately from σFn |Fn−1 = σFn−1 .

Proposition 6.4.15.
(OFn ,Trn)n is an inverse system of OL-modules with surjective transition maps.
Moreover, the composition of homomorphisms

OFn

µn // OFn [ΥFn|F ]
prn // OFn [ΥFn−1|F ]

has image in OFn−1 [ΥFn−1|F ], i.e. prn induces a homomorphism Sn → Sn−1 and the
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diagram
OFn

µn //

Trn
��

Sn

prn
��

OFn−1

µn−1 // Sn−1

is commutative. So in particular, (Sn,prn)n is an inverse system of OL-modules with
surjective transition maps.

Proof.
For the first assertion, the only thing to prove isthe statement that the trace maps
are all surjective. The idea for this is at [LZ14b, Proposition 3.5, p. 8]. Since Fn|Fn−1

is, by definition, unramified, the corresponding extension of the residue class fields
kOFn

|kOFn−1
is separable. Therefore, the trace map between the residue class fields is

not zero (cf. [Sta18, Tag 0BIE, Lemma 9.20.7]) and since it is kOFn−1
-linear it clearly

is surjective. Since OFn and OFn−1 are complete with respect to the πL-adic topology,
this then induces that Trn also is surjective.
For the second assertion let x ∈ OFn and compute

prn(µn(x)) = prn

 ∑
g∈ΥFn|F

g−1(x) · g

 =
∑

h∈Υn−1

 ∑
g∈ΥFn|F

g≡h

g−1(x)

 · h
For every h ∈ Υn−1 fix now a lift h̃ ∈ ΥFn|F . In particular, if g ∈ ΥFn|F , such that
g mod Ξn = h, then we can find r ∈ Ξn such that g = rh̃. Then we can rewrite the
above equation to

prn(µn(x)) =
∑

h∈Υn−1

(∑
r∈Ξn

h̃−1r−1(x)

)
· h =

∑
h∈Υn−1

h−1

(∑
r∈Ξn

r(x)

)
· h.

Because of
Trn(x) =

∑
r∈Ξn

r(x)

and since Υn−1 preserves OFn−1 we then get prn(µn(x)) ∈ OFn−1 [ΥFn−1|F ] as desired.
Furthermore, we observe

prn(µn(x)) =
∑

h∈Υn−1

h−1Trn(x) · h = µn−1(Trn(x))

and since Sn−1 is the image of µn−1 and Trn is surjective, their composition OFn →



186 6.4. Yager Modules

Sn−1 is also surjective. So, prn : Sn → Sn−1 also has to be surjective.

Definition 6.4.16.
As in [LZ14b, Definition 3.4, p. 8], we define the Yager module S∞ to be

S∞ := lim←−
n

Sn.

Remark 6.4.17.
Since for every n ∈ N the Frobenius ∆1(σFn ,−) of Sn is a topological automorphism
and since these Frobenii commute with the transition maps of the inverse system
(Sn)n (cf. Remark 6.4.14) the projective limit lim←−n∆1(σFn ,−) again is a topological
automorphism of S∞. We will denote this automorphism by ϕS∞ and its inverse by
ψS∞.

The following Lemma is named as a well known fact in [LZ14b, Proposition 3.5,
p. 8], but there is no reference. It is also mentioned in [LZ14a, Remark 3.3, p. 10]
and [LZ14a, Proposition 3.2, p. 9–10] also fits in our situation. Nevertheless, we will
explain the proof using the theory of integral normal bases.

Proposition 6.4.18.
lim←−nOFn (and then also S∞) is a free rank 1-module over ΛOF

(Υ).

Proof.
The idea is to construct a trace compatible system of elements xn ∈ OFn with
x0 6≡ 0 mod πLOF . Because then it is TrOFn |OF

(xn) 6≡ 0 mod πLOF and xn is an
integral normal basis generator of OFn |OF (cf. Theorem 6.3.6) and therefore generates
OFn as OF [Υn]-module (cf. Lemma 6.4.10). Then (xn)n generates lim←−n OFn as
ΛOF

(Υ)-module and is in particular free of rank 1. The existence of such a system is
ensured by the surjectivity of the involved trace maps (cf. Proposition 6.4.15):
We start with an element x0 ∈ OF such that x0 6= 0 mod πLOF . Assuming we have
xn ∈ OFn such that TrOFn |OF

(xn) 6≡ 0 mod πLOF we choose an element xn+1 ∈ OFn+1

such that TrOFn+1
|OFn

(xn+1) = xn. Then it is

TrOFn+1
|OL

(xn+1) = TrOFn |OF
(xn) 6≡ 0 mod πLOF .

As in [LZ14b, Proposition 3.6, p. 8] S∞ can be realized as a submodule of
Λ
ÔF∞

(Υ) = lim←−OF∞ [ΥFn|F ]. We will explain this below.
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Remark 6.4.19.
The canonical inclusion S∞ ↪→ Λ

ÔF∞
(Υ) is a topological embedding with closed image.

Proof.
Since all the Sn are compact (cf. Remark 6.4.13), their projective limit S∞ is compact
as well. Furthermore, Λ

ÔF∞
(Υ) is a Hausdorff space since all the OF∞ [ΥFn|F ] are

Hausdorff spaces and therefore the embedding S∞ ↪→ Λ
ÔF∞

(Υ) is topological with
closed image.

Remark 6.4.20.
As in Definition 6.4.1 we can define two actions from Υ on ÔF∞ [ΥFn|F ] and then
also on Λ

ÔF∞
(Υ), which we again denote by ∆1 and ∆2 respectively.

For every n ∈ N denote by Θn the Galois group of F∞|Fn.

Lemma 6.4.21.
For every n ∈ N it is

ÔF∞ [ΥFn|F ]
∆1=∆2 = OFn [ΥFn|F ]

∆1=∆2 .

Proof.
This is an outline of the last sentence of [LZ14b, Proposition 3.6, p. 8].
For the inclusion OFn [ΥFn|F ]

∆1=∆2 ⊆ ÔF∞ [ΥFn|F ]
∆1=∆2 is nothing to prove. For the

other inclusion, first note, that ΥFn|F = Υ/Θn and therefore multiplication with
elements from Θn is trivial on ΥFn|F . This then means, that Θn acts trivial on
ÔF∞ [ΥFn|F ] through ∆2. In particular, for h ∈ Θn and

∑
xg · g ∈ ÔF∞ [ΥFn|F ] we

have

∆2

h, ∑
g∈ΥFn|F

xg · g

 =
∑

g∈ΥFn|F

xg · (hg) =
∑

g∈ΥFn|F

xg · g.

If now
∑
xg · g ∈ ÔF∞ [ΥFn|F ]

∆1=∆2 , we can compute

∑
g∈ΥFn|F

xg · g = ∆2

h, ∑
g∈ΥFn|F

xg · g


= ∆1

h, ∑
g∈ΥFn|F

xg · g


=

∑
g∈ΥFn|F

h(xg) · g.
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So we get h(xg) = xg for all g ∈ ΥFn|F and h ∈ Θn, i.e. xg ∈
(
ÔF∞

)Θn

for all

g ∈ ΥFn|F and because of
(
ÔF∞

)Θn

= OFn (cf. Lemma 3.2.11) we have xg ∈
OFn for all g ∈ ΥFn|F . So we can conclude

∑
xg · g ∈ OFn [ΥFn|F ] and therefore

ÔF∞ [ΥFn|F ]
∆1=∆2 = OFn [ΥFn|F ]

∆1=∆2 .

Proposition 6.4.22.
The canonical inclusion S∞ ↪→ Λ

ÔF∞
(Υ) induces a topological isomorphism

S∞ ∼= (Λ
ÔF∞

(Υ))∆1=∆2.

Proof.
Since the canonical inclusion S∞ ↪→ Λ

ÔF∞
(Υ) is a topological embedding (cf. Re-

mark 6.4.20), it only is to check that its image is (Λ
ÔF∞

(Υ))∆1=∆2 . As stated in

[LZ14b, Proposition 3.6, p. 8], to see this it is enough to show ÔF∞ [ΥFn|F ]
∆1=∆2 =

OFn [ΥFn|F ]
∆1=∆2 what is Lemma 6.4.21.

The following remark is from [LZ14b, p. 8].

Remark 6.4.23.
Let E|L be a finite extension and τ : Υ→ E× a continuous character, i.e. a continuous
group homomorphism. Then τ induces a homomorphism

Λ
ÔF∞

(Υ)→ ÔF∞ ⊗OL
OE

which we also will denote by τ .

Following [LZ14b, p. 8], we can make the same observation.

Proposition 6.4.24.
Let E|L be a finite extension, τ : Υ → E× be a continuous character and Ω ∈ S∞.
For σ ∈ Υ we then have

σ(τ(Ω)) = τ(σ)τ(Ω),

i.e. τ(Ω) is a period for the character τ−1.
If Ω is a generator of S∞ as ΛOL

(Υ)-module, then we have η(Ω) 6≡ 0 mod πL for all
continuous characters η : Υ→ E×.

Proof.
This is exactly [LZ14b, Proposition 3.7, p. 8–9].
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6.5 Wach Modules

As in [LZ14b, Section 3.3, Section 3.4, p. 9–11] we want to make use of the theory of
Wach modules. The references for our situation are [KR09, Corollary 3.3.8, p. 460]
and [SV19, p. 6–19].
The following proposition and definition are straight generalizations of [SV19, p. 6–7].

Proposition 6.5.1.
Let E|L be a finite extension. For V ∈ Repcris,an

OL
(GE) exists a module

NE|L(T ) ∈Modan
ϕ,Γ(A

+
E|L) such that the (ϕE|L,ΓE)-structure of NE|L(V ) is induced

from the one of ME|L(V ) and we have

AE|L ⊗A+
E|L

NE|L(V ) = ME|L(V ).

Definition 6.5.2.
Let E|L be a finite extension. For V ∈ Repcris,an

OL
(GE) the module

NE|L(V ) ∈ Modan
ϕ,Γ(A

+
E|L) from the above Proposition 6.5.1 is called the Wach

module of V over E.

Remark 6.5.3.
As in [SV19, Proposition 1.8, p. 8–10] one can prove that NE|L(V ) for V ∈ Repcris,an

OL
(GE)

is unique inside ME|L(V ) with the properties described in Proposition 6.5.1.

Remark 6.5.4.
We want to topologize the Wach modules in the same way as in [LZ14b, p. 9]. Since
we discussed the weak topology in detail, this fits into a greater picture:
Let E|L be a finite extension and V ∈ Repcris,an

OL
(GE). As all other modules on

the (ϕE|L,ΓE)-side, we want to equip NE|L(V ) with a weak topology. To do this
consistently, we define it to be the induced topology from ME|L(V ), where ME|L(V )

carries its weak topology. Since NE|L(V ) is a finitely free A+
E|L-module and the weak

topology on A+
E|L is the topology defined by the ideals (πL, ωφ)

nA+
E|L for n ≥ 0, a basis

for the weak topology on NE|L(V ) is given by the A+
E|L-submodules (πL, ωφ)

nNE|L(V )

for n ≥ 0. This then coincides with the topology of loc. cit.

Remark 6.5.5.
Recall Qφ =

[πL]φωφ

ωφ
from the beginning of this chapter. By definition, we then have

ϕL(ωφ) = Qφωφ.
If E|L is a finite extension, T ∈ Repcris,an

OL
(GE) and V = T [1/πL] recall also

that we denoted by ϕ∗NE|L(V ) the A+
E|L-submodule of NE|L(V )[1/Qφ] generated

by im(ϕNE|L(V )). Using the projection formula for ψME|L(V ) (cf. Remark 4.2.3) and
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the fact that A+
E|L is stable under ψE|L, gives a ψ-operator

ψNE|L(V ) : ϕ
∗NE|L(V )→ NE|L(V ).

If all Hodge-Tate weights of V are ≥ 0, we have NE|L(V ) ⊆ ϕ∗NE|L(V ), i.e. ψNE|L(V )

restricts to an endomorphism of NE|L(V ) and we obtain a homomorphism

NE|L(T )
ψ=1 → (ϕ∗NE|L(V ))ψ=0, x 7→ x− πL

qL
ϕNE|L(V )(x).

Lemma 6.5.6.
Let E|L be a finite and unramified extension and let V ∈ Rep

(fg,f)
OL

(GE). Then there
exists a canonical isomorphism of (ϕE|L,ΓE)-modules

ME|L(V ) ∼= ML(V )⊗OL
OE ,

where ϕ on the right hand side is ϕML(V ) ⊗ σE|L with σE|L the Frobenius of the
unramified extension E|L, i.e. the element of the Galois group which raises an
element to its qL-th power modulo πL.

Proof.
The proof is the same as in [LZ14b, Lemma 2.4, p. 4–5].

Lemma 6.5.7.
Let E|L be a finite and unramified extension and let V ∈ Repcris,an

OL
(GL). Then there

exists a canonical isomorphism

NE|L(V ) ∼= NL(V )⊗OL
OE .

Proof.
With Lemma 6.5.6 this is an immediate consequence of the uniqueness property of
NE|L(V ) inside ME|L(V ) (cf. Remark 6.5.3).

As in [LZ14b, p. 9] we are interested in the Wach modules over OFn . The above
Lemma 6.5.7 says that they have a special structure coming from the Wach module
over L. If T ∈ Repcris,an

OL
(GL) it then is clear from Proposition 6.4.15 that the

NFn|L(T ) form an inverse system with surjective transition maps, which then leads
to the following definition (cf. [LZ14a, Definition 3.10, p. 11]).

Definition 6.5.8.
NF∞|L(T ) := lim←−

n∈N
NFn|L(T ).
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Remark 6.5.9.
Let T ∈ Repcris,an

OL
(GL). Then Lemma 6.5.7 says that we have

NFn|L(T )
∼= NF |L(T )⊗OF

OFn .

With Lemma 6.4.9 this then transforms into

NFn|L(T )
∼= NF |L(T )⊗OF

Sn.

We now would like to have a similar description for NF∞|L(T ). Let for this a be the
ideal of A+

F |L⊗OF
ΛOF

(Υ) generated by (πL, ωφ, υ− 1), where υ is a topological gener-
ator of Υ. We denote the completions of A+

F |L⊗OF
ΛOF

(Υ) and NF |L(T )⊗OF
S∞ with

respect to the a-adic topology by A+
F |L⊗̂OF

ΛOF
(Υ) and NF |L(T )⊗̂OF

S∞ respectively.
The idea for this construction is taken from [LZ14b, p. 9], which unfortunately is no
longer a part of the newer version [LZ14a].
Note that both A+

F |L⊗̂OF
ΛOF

(Υ) and NF |L(T )⊗̂OF
S∞ are compact since the quotients

A+
F |L⊗̂OF

ΛOF
(Υ)/(πL, ωφ, υ − 1)n are finite for all n ∈ N.

Note also, that since A+
F |L⊗OF

ΛOF
(Υ) and NF |L(T )⊗OF

S∞ are Hausdorff spaces, the
canonical homomorphisms A+

F |L ⊗OF
ΛOF

(Υ)→ A+
F |L⊗̂OF

ΛOF
(Υ) and NF |L(T )⊗OF

S∞ → NF |L(T )⊗̂OF
S∞ are injective (cf. [Bou89a, Chapter III, §3.4, Theorem 1,

p.248]).

Proposition 6.5.10.
Let T ∈ Repcris,an

OL
(GL). We then have an isomorphism

NF∞|L(T ) ∼= NF |L(T )⊗̂OF
S∞.

Proof.
The idea is the same as in [LZ14b, Proposition 3.12, p. 9–10] which did not make
its way to [LZ14a, Proposition 3.11, p. 11–12]. Therefore, we recall it here for our
situation.
Fix n ≥ 0. Since the natural projection S∞ → Sn is surjective (cf. Proposition 6.4.15)
it clearly induces a surjection

NF |L(T )⊗OF
S∞ � NF |L(T )⊗OF

Sn ∼= NFn|L(T ),

which commutes with the transition maps from the inverse system, since the projection
S∞ � Sn does. The kernel of the canonical projection S∞ � Sn is the ΛOL

(Υ)-
submodule

(
υp

n − 1
)
S∞ and since Sn is a free and therefore flat OL-module, the
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kernel of the above homomorphism is the A+
F |L ⊗OF

ΛOL
(Υ)-submodule

(
υp

n − 1
)
NF |L(T )⊗OF

S∞.

Since NF |L(T )⊗OF
S∞ is a Hausdorff space and NFn|L(T ) is complete (with respect

to their respective weak topologies), the above homomorphism induces a continuous
homomorphism

NF |L(T )⊗̂OF
S∞ → NFn|L(T )

(cf. [Bou89a, Chapter III, §3.4, Proposition 8, p. 248]). It clearly is also surjective,
since NF |L(T )⊗OF

S∞ � NFn|L(T ) is and the diagram

NF |L(T )⊗OF
S∞
� � //

&& &&

NF |L(T )⊗̂OF
S∞

xx
Sn

is commutative. This homomorphism then again commutes with the transition maps
of the inverse system (NFn|L(T ))n and therefore induces the homomorphism

NF |L(T )⊗̂OF
S∞ → NF∞|L(T ).

Since the involved modules are compact (cf. Remark 6.5.9 for NF |L(T )⊗̂OF
S∞ and

NF∞|L(T ) is compact since all the NFn|L(T ) are compact) this is still surjective with
kernel ⋂

n∈N

(
υp

n − 1
)
NF |L(T )⊗OF

S∞ = {0}.

Since it’s bijective and continuous and the involved spaces are compact Hausdorff
spaces, it is a topological isomorphism.

6.6 The Regulator Map

The aim of this section is to define a regulator map similar to [LZ14a, Definition
4.6, p.16]. Unfortunately we cannot adopt their whole constructing since in our
situation we have no result similar to [LZ14a, Proposition 3.12, p.12] because in the
general Lubin-Tate case it is not known if there exists an AL-basis (u1, . . . , uqL) of
ϕL(AL) such that ψL(ui) = δ1i. Therefore, we make a similar construction to [SV19,
p. 71] using the ring R+, which are the power series over a complete extension of L,
converging on the open unit disk (for a precise description see [SV19, Section 2.2.1,
p. 36–40]). This ring then has the above described property and in Lemma 6.6.4 we
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prove the statement which in our case plays the part of [LZ14a, Proposition 3.12,
p.12].

Lemma 6.6.1.
Let T ∈ Repcris,an

OL
(GL) such that T has no quotient isomorphic to the trivial repre-

sentation and such that all Hodge-Tate weights of V := T [1/πL] are ≥ 0. We then
have

H1
Iw(F∞L∞|L, T ) ∼= NF∞|L(T (τ

−1))ψ=1.

Proof.
From Theorem 4.3.13 we deduce

H1
Iw(FnL∞|Fn, T ) ∼= MFn|L(T (τ

−1))ψ=1

for every n ∈ N. Since the intermediate fields of FnL∞|Fn are clearly a subset of the
intermediate fields of FnL∞|L, they are also cofinal and therefore it is

H1
Iw(FnL∞|Fn, T ) = H1

Iw(FnL∞|L, T ).

As in [SV19, Lemma1.30, p. 21–22] (here we need the assumption that T has no
quotient isomorphic to the trivial representation) one then shows

MFn|L(T (τ
−1))ψ=1 = NFn|L(T (τ

−1))ψ=1.

Taking projective limits then gives us

H1
Iw(F∞L∞|L, T ) ∼= NF∞|L(T (τ

−1))ψ=1.

For the construction of the regulator map we need some more notation and
observations from [SV19] respectively from [Col16]. In particular, we recall from
[SV19, Section 2.2.1, p. 36–40] the notion of the Robba ring and some properties of it.
For this overview let K be a complete extension of L. Then we denote by R+

K the
subring of KJZK consisting of those the power series converging for all z ∈ Cp with
absolute value less than 1. For on Interval I ⊆ [0, 1], we denote by RIK the ring inside
KJZ,Z−1K consisting of those elements converging for z ∈ Cp with absolute value in
I. For fixed r ∈ (0, 1) we then set

R
[r,1)
K

:= lim←−
r<s<1

R
[r,s]
K
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and
RK :=

⋃
0<r<1

R
[r,1)
K .

Recall from [Col16, p. 10] that we have RK = R+
K ∩KJZK. We do also have a ϕ- and

a ψ-operator on RK which we again denote by ϕL and ψL respectively (cf. [Col16,
p. 11]). They clearly restrict to endomorphisms of R+

K and fulfill a projection formula
similar to one from Remark 4.2.3. Let Ω ∈ Cp be the period of a fixed generator t′ of
the dual of the Tate module TGφ. This means, that the power series attached to t′

starts with ΩX + · · · (cf. [ST01, p. 457]) and for b ∈ OL we set (cf. [Col16, p. 9])

η(b, Z) := exp(bΩ logLT(Z)).

From [Col16, p. 9] we then also deduce η(b, Z) ∈ OCpJZK×. By abuse of notation,
we also write η(b, Z) for b ∈ OL/πLOL instead of η(a, Z) where a ∈ OL is a lift of b.
Note that η and ψL have the following correlation (cf. [Col16, p. 11])

ψL(η(b, Z)) =

η
(

b
πL
, Z
)
, if b ∈ πLOL

0, else.

If Ω ∈ K we deduce from [Col16, p. 11]

RK =
⊕

b∈OL/πLOL

η(b, Z)ϕL(RK).

In particular, for x ∈ RK we then have

x =
∑

b∈OL/πLOL

η(b, Z)ϕL(ψL(η(−b, Z)x)).

Since η(b, Z) is invertible in KJZK and both, ϕL and ψL are given by power series,
the above decomposition holds true for R+

K, i.e. if Ω ∈ K we have

R+
K =

⊕
b∈OL/πLOL

η(b, Z)ϕL(R
+
K).

Furthermore, recall from [SV19, p. 34] that we have an isomorphism

(R+
K)

ψL=0 ∼= DL(ΓL,K).

Finally, by ϕL ⊗ ϕS∞ and ψL ⊗ ψS∞ respectively we then also have a ϕ- and a
ψ-operator on R+

K ⊗OF
S∞. These endomorphisms then extend by continuity to
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R+
K⊗̂OF

S∞. On R+
K⊗̂OF

ΛOF
(Υ) we then clearly can make a similar construction for

a ϕ- and ψ-operator.

Lemma 6.6.2.
Let T ∈ Repcris,an

OL
(GL) and V = T [1/πL]. Then we have a homomorphism

(
ϕ∗NF∞|L(V )

)ψ=0 //
(
R+
F ⊗̂OF

S∞
)ψL=0 ⊗L Dcris,L(V ) · · ·

· · · //
(
R+
Cp
⊗̂OF

S∞

)ψL=0
⊗L Dcris,L(V ).

Proof.
From [SV19, Corollary 1.14, p. 14–15] we deduce, that there is a homomorphism

NL(V )→ R+
L ⊗L Dcris,L(V ),

which by tensoring with OF induces a homomorphism

NF |L(V ) = OF ⊗OL
NL(V )→ OF ⊗OL

R+
L ⊗L Dcris,L(V ) = R+

F ⊗L Dcris,L(V ).

Together with Proposition 6.5.10 this induces a homomorphism

NF∞|L(V ) ∼= S∞⊗̂OF
NF |L(V )→ S∞⊗̂OF

(
R+
F ⊗L Dcris,L(V )

)
.

But since Dcris,L(V ) is a finite dimensional L-vector space we have

S∞⊗̂OF

(
R+
F ⊗L Dcris,L(V )

) ∼= (S∞⊗̂OF
R+
F

)
⊗L Dcris,L(V )

and therefore we can show with exactly the same proof as in loc. cit. that there is a
homomorphism

(
ϕ∗ (NF |L(V )⊗̂OF

S∞
))ψ=0 →

(
R+
F ⊗̂OF

S∞
)ψL=0 ⊗L Dcris,L(V ).

Since S∞ is torsion free as OF -module, it is flat and therefore we get an inclusion

(
R+
F ⊗̂OF

S∞
)ψL=0 � � //

(
R+
Cp
⊗̂OF

S∞

)
.ψL=0

Together with the above homomorphism, this then gives us the desired homomorphism.
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Lemma 6.6.3.
The elements of R+

Cp
⊗̂OF

ΛOF
(Υ) can be written in the form

∑
b∈OL/πLOL

η(b, Z)ϕL(xb)

with xb ∈ R+
Cp
⊗̂OF

ΛOF
(Υ).

Proof.
It suffices to prove the claim for R+

Cp
⊗OF

ΛOF
(Υ), the statement for the completion

then follows by continuity.
So let x ∈ R+

Cp
⊗OF

ΛOF
(Υ) and write x =

∑m
i=1 xi ⊗ yi for some xi ∈ R+

Cp
and

yi ∈ ΛOF
(Υ). Then, for every 1 ≤ i ≤ m there exist x(i)b ∈ R+

Cp
(cf. the discussion

above) with b ∈ OL/πLOL such that

xi =
∑

b∈OL/πLOL

η(b, Z)ϕL(x
(i)
b ).

We then compute

x =
m∑
i=0

 ∑
b∈OL/πLOL

η(b, Z)ϕL

(
(x

(i)
b

)
)

⊗ yi
=

∑
b∈OL/πLOL

η(b, Z)

(
m∑
i=0

ϕL

(
x
(i)
b

)
⊗ yi

)

=
∑

b∈OL/πLOL

η(b, Z)ϕL

(
m∑
i=0

x
(i)
b ⊗ y

′
i

)
,

where y′i ∈ ΛOF
(Υ) is a preimage of yi for every 1 ≤ i ≤ m under the Frobenius on

ΛOF
(Υ) (which is bijective cf. Remark 6.4.17 and Proposition 6.4.18).

As described at the beginning of this section, the following Lemma is the main
difference to the construction of the regulator map in [LZ14a].

Lemma 6.6.4.
We have (

R+
Cp
⊗̂OF

S∞

)ψL=0 ∼=
(
R+
Cp

)ψL=0
⊗̂OF

S∞.

Proof.
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With the above discussion about the decomposition

R+
Cp

=
⊕

b∈OL/πLOL

η(b, Z)ϕL(R
+
Cp
),

this proof is nearly analogous to the proof of [LZ14a, Proposition 3.12, p. 12].
In Proposition 6.4.18 we saw that S∞ is a free rank one module of ΛOF

(Υ), say with
basis ξ. Since

R+
Cp
⊗̂OF

S∞ ∼=
(
R+
Cp
⊗̂OF

ΛOF
(Υ)
)
⊗R+

Cp⊗OF
ΛOF

(Υ)

(
R+
Cp
⊗OF

S∞

)
(cf. [Mat70, Theorem 55, p. 170]) the elements of R+

Cp
⊗̂OF

S∞ are of the form x(1⊗ ξ)
with x ∈ R+

Cp
⊗̂OF

ΛOF
(Υ). Then for every b ∈ OL/πLOL let xb ∈ R+

Cp
⊗̂OF

ΛOF
(Υ)

such that
x =

∑
b∈OL/πLOL

η(b, Z)ϕL(xb),

(cf. Lemma 6.6.3). Applying ψL to such an element then gives us

ψL(x(1⊗ ξ)) = ψL

 ∑
b∈OL/πLOL

η(b, Z)ϕL(xb)(1⊗ ξ)


=

∑
b∈OL/πLOL

ψL(η(b, Z))xb(1⊗ ψS∞(ξ))

= η(0, Z)x0(1⊗ ψS∞(ξ)).

Since ψS∞ is an isomorphism on S∞ (cf. Remark 6.4.17), we deduce that for
ψL(x(1⊗ ξ)) = 0 it must be x0 = 0. Therefore we have

x =
∑

b∈(OL/πLOL)×

η(b, Z)ϕL(xb),

i.e. x(1⊗ ξ) ∈
(
R+
Cp

)ψL=0
⊗̂OL

S∞.

Lemma 6.6.5.
We have an injective homomorphism

(
R+
Cp

)ψL=0
⊗̂OF

S∞
� � // DL(ΓL,Cp)⊗̂OF

DQp(Υ,Cp).

Proof.
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From the discussion before Lemma 6.6.2 we deduce the isomorphism(
R+
Cp

)ψL=0 ∼= DL(ΓL,Cp)

As in [LZ14a, p. 15] we have a continuous inclusion

S∞
� � // Λ

ÔF∞
(Υ) �

� // DQp(Υ, F̂∞).

Since R+
Cp

is torsion free as OF -modules,
(
R+
Cp

)ψL=0
is also torsion free as OF -module.

So in particular, it is flat and we get an inclusion

(
R+
Cp

)ψL=0
⊗OF

S∞
� � //

(
R+
Cp

)ψL=0
⊗OF

DQp(Υ, F̂∞).

Since projective limits are left exact, this inclusion extends to the completion and so
we get the desired inclusion by composing the above homomorphisms

(
R+
Cp

)ψL=0
⊗̂OF

S∞
� � //

(
R+
Cp

)ψL=0
⊗̂OF

DQp(Υ, F̂∞)
∼= · · ·

· · ·
∼= // DL(ΓL,Cp)⊗̂OF

DQp(Υ, F̂∞) �
� // DL(ΓL,Cp)⊗̂OF

DQp(Υ,Cp).

Definition 6.6.6.
Let T ∈ Repcris,an

OL
(GL) and V = T [1/πL] such that T has no quotient isomorphic to

the trivial representation. We define the regulator map L
ΓL,Υ
V as the composite of

the above discussed maps:

H1
Iw(F∞L∞|L, T )

∼= // NF∞|L(T (τ
−1))ψ=1

//
(
ϕ∗NF∞|L(V (τ−1))

)ψ=0

//
(
R+
F ⊗̂OF

S∞
)ψ=0 ⊗L Dcris,L(V (τ−1))

//
(
R+
Cp
⊗̂OF

S∞

)ψ=0
⊗L Dcris,L(V (τ−1))

//
(
R+
Cp

)ψ=0
⊗̂OF

S∞ ⊗L Dcris,L(V (τ−1))

� � // DL(ΓL,Cp)⊗̂OF
DQp(Υ,Cp)⊗L Dcris,L(V (τ−1)).

Following the order of appearance above, these maps are subject of Lemma 6.6.1,
Remark 6.5.5, Lemma 6.6.2 (line 3 and 4), Lemma 6.6.4 and Lemma 6.6.5 respectively.
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The following theorem is the analogue of [LZ14a, Theorem 4.7, p. 16–17] adapted
to our situation.

Theorem 6.6.7.
Let T ∈ Repcris,an

OL
(GL) and V = T [1/πL] such that T has no quotient isomorphic to

the trivial representation. Then the regulator map L
ΓL,Υ
V from the above Definition

6.6.6 is a homomoprhism of ΛOF
(ΓL×Υ)-modules and has the following two properties

which uniquely determine this homomorphism:

1. If E|F is a finite, unramified extension contained in F∞K∞, we get a commu-
tative diagram

H1
Iw(F∞L∞|L, T )

L
ΓL,Υ

V //

��

DL(ΓL,Cp)⊗̂OF
DQp(Υ,Cp)⊗L Dcris,L(V (τ−1))

��
H1

Iw(EL∞|L, T )
L
ΓL,ΥE
V // DL(ΓL,Cp)⊗̂OF

DQp(ΥE ,Cp)⊗L Dcris,L(V (τ−1)),

where ΥE = Gal(E|F ) and L
ΓL,ΥE
V is defined in the same way as L

ΓL,Υ
V .

2. For x ∈ H1
Iw(F∞L∞|L, T ) and a character η : ΓL → Cp the function

ω 7→ L
ΓL,Υ
V (x)(η ⊗ ω) is a bounded Qp-analytic function.

Proof.
The proof of [LZ14a, Theorem 4.7, p. 16–17] translates to our situation.

The goal now is to establish an analogous result to [LZ14a, Theorem 4.13, p. 20].
To do this, we adapt the relevant statements from [LZ14a] to our situation. The
proofs in our situation are all analogous and we only cite the relevant parts from
[LZ14a]. To simplify a comparison, we cite all the statements of [LZ14a] which have
an input to [LZ14a, Theorem 4.13, p. 20] and translate them into our situation.

Lemma 6.6.8.
Let T ∈ Repcris,an

OL
(GL) and let M be a finitely free OL-module with a continuous

action from Υ via a homomorphism ΛOL
(Υ)→ EndOL

(M). We then have canonical
isomorphisms

NF |L(T )⊗OF

(
ÔF∞ ⊗OL

M
)Υ ∼= NF |L(T ⊗OL

M)

and
M ⊗OL

NF∞|L(T ) ∼= NF∞|L(M ⊗OL
T ).
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Proof.
Since taking Wach Modules is a ⊗-functor (cf. [KR09, Corollary (3.3.8), p. 460]),
the first isomorphism is obtained exactly as in [LZ14a, Proposition 3.13, p. 13]. The
second is [LZ14a, Theorem 3.15, p. 13].

Proposition 6.6.9.
Let X|L be a finite extension and ω : Υ→ O×

X a continuous homomorphism.Then the
following diagram commutes

OX ⊗OL
H1

Iw(F∞L∞|L, T )
L
ΓL,Υ

V //

��

X ⊗L DL(ΓL,Cp)⊗̂OF
DQp(Υ,Cp)⊗L Dcris,L(V (τ−1))

��
H1

Iw(F∞L∞|L, T (ω))
L
ΓL,Υ

V (ω) // DL(ΓL,Cp)⊗̂OF
DQp(Υ,Cp)⊗L Dcris,L(V (τ−1ω))

Proof.
This is the same proof as the one of [LZ14a, Proposition 4.12, p. 19].

Corollary 6.6.10.
Let X|L and E|F be finite extensions such that E is unramified and contained in
F∞K∞ and let ω : Υ → O×

X be a continuous homomorphism.Then the following
diagram commutes

H1
Iw(F∞L∞|L, T )

L
ΓL,Υ

V //

��

DL(ΓL,Cp)⊗̂OF
DQp(Υ,Cp)⊗L Dcris,L(V (τ−1))

��
H1

Iw(EL∞|L, T (ω))
L
ΓL,ΥE
V (ω) // DL(ΓL,Cp)⊗̂OF

DQp(ΥE ,Cp)⊗L Dcris,L(V (τ−1ω))

Proof.
As mentioned before [LZ14a, Theorem 4.13, p. 20] this now is an immediate conse-
quence of Theorem 6.6.7 and Proposition 6.6.9. Precisely we obtain the following
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commutative diagram

H1
Iw(F∞L∞|L, T )

L
ΓL,Υ

V //

��

DL(ΓL,Cp)⊗̂OF
DQp(Υ,Cp)⊗L Dcris,L(V (τ−1))

��
OX ⊗OL

H1
Iw(F∞L∞|L, T )

L
ΓL,Υ

V //

��

X ⊗L DL(ΓL,Cp)⊗̂OF
DQp(Υ,Cp)⊗L Dcris,L(V (τ−1))

��
H1

Iw(F∞L∞|L, T (ω))
L
ΓL,Υ

V (ω) //

��

DL(ΓL,Cp)⊗̂OF
DQp(Υ,Cp)⊗L Dcris,L(V (τ−1ω))

��
H1

Iw(EL∞|L, T (ω))
L
ΓL,ΥE
V (ω) // DL(ΓL,Cp)⊗̂OF

DQp(ΥE ,Cp)⊗L Dcris,L(V (τ−1ω)),

where the vertical maps in the upper square send an element x to 1⊗ x. Therefore
the upper square commutes evidently. The middle square commutes because of
Proposition 6.6.9 and the latter because of Theorem 6.6.7.
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−1hng)),

where c ∈ Cncts(H,M), G is a profinite group, H /G a closed, normal subgroup
and M a discrete G-module
It denotes also the induced action from G/H on RΓcts(H,M). 145

Ãd
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31
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G. 13
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Lubin-Tate character, giving the isomorphism χLT : ΓL
∼=−→ O×

L . 53
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Cokernel of the homomorphism f . 9
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entries. 145
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full subcategory of D(A) whose objects are the bounded below complexes. 145
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=
(
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Dcris,L(−)

= (Bcris,L ⊗L −)GL = (Bcris ⊗L0 −)
GL . 173

DISG
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group G together with continuous group homomorphisms respecting the action
from G. 22

DISG,M

Category of discrete abelian groups with commuting continuous actions from a
profinite group G and a topological monoid M together with continuous group
homomorphisms respecting the actions from G and M . 22
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∆1
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. 177

∆2

Action from Υn on OFn with

∆1(h,
∑

xg · g) =
∑

xh−1g · g

. 177

dnTot(A•,•)

n-th differential of the total complex Tot(A•,•) of the double complex A•,•. 30

∂cts

the differential Xn−1
cts (G,A)→ Xn

cts(G,A). 13

∂inv

Invariant derivation corresponding to dlogLT. 84

DX(G,E)

E-valued locally X-analytic distributions on B, where X|Qp is finite and E|X
is complete, and G is a Lie group over X. Equivalently, this is the continuous
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D(−)
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EK|L

= (Esep
L )HK for K|L finite. 58
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K|L

Integral closure of E+
L inside EK|L for K|L finite. 58

E+
L

Ring of integers of EL. 55

Esep
L
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Esep,+
L

Integral closure of E+
L inside Esep

L . 55
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= exp(bΩlogLT(Z)), where b ∈ OL/πLOL and Ω the period of a fixed generator
t′ of the dual of the Tate module TGφ of the chosen Lubin-Tate group. 194
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= lim−→U∈U(G;H) U
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141

FΓK
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FGK/HK
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154
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φ
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∂Y |(X,Y )=(0,Z) in OLJZK. 84

Gφ,n

= ker([πnL]φ : M→M) = {x ∈M | [πnL]φ(x) = 0}. 52

[a]φ

Endomorphism of Gφ associated to a ∈ OL. 52

FiliDdR(V )
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σ−nK|L(gu,t0(t0,n)) = un were t0 = (t0,n)n is an OL-generator of TGφ. 90
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(fg)
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H i
Iw(K∞|K,V ) = lim←−

K⊆E⊆K∞
finite

H i(GE , V )

where i ∈ N0. 109

Homcts

Continuous homomorphisms. 97

HomR(M,N)

R-linear Homomorphisms between the R-modules M and N . 21
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X(G,A)

Cohomology of the complex C•
X(G,A). 30

H∗
f (G,A)

Cohomology of the complex C•
f (G,A). 31

im(f)

Image of the homomorphism f . 9
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= {f : G → X | f locally constant and U -linear}, for a profinite group G an
open subgroup U and a discrete U -module M .. 141

ι

the involution x 7→ x−1 of a group. 150

K[
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Kernel of the homomorphism f . 9

kK

Residue class field of the finite extension K|Qp. 51
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n
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= ∪nKn. 53
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R(G/H) the Iwasawa module of the profinite group G with

coefficients in the ring R. 170
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ΓL,Υ
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L and K|L finite. 190

ψS∞

inverse of the Frobenius ϕS∞ of S∞. 186
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RΓ•
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RΓ•
Iw(K∞|K, T )
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155
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K

Subring of the power series ring with coefficients in K, consisting of those power
series converging for all z ∈ Cp with absolute value less than 1, K|L finite. 193

RIK

Ring inside KJZK, consisting of those elements converging for z ∈ Cp with
absolute value in I, where I ⊆ [0, 1] is an interval and K is a complete extension
of L. 193

R
[r,1)
K

= lim←−r<s<1
R
[r,s]
K with 0 < r < 1 and where K is a complete extension of L. 193
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∪0<r<1R
[r,1)
K , where K is a complete extension of L. 194

RJX1, . . . XnK

Power series ring with variables X1, . . . Xn and with coefficients in the ring R.
52

R((X1, . . . , Xn))

Ring of Laurent series in the variables X1, . . . , Xn with coefficients in R. 54

σFn

generator of the Galois group Υn = GalFn|F . 170

σK|L

Lift of the qL-Frobenius of the residue class field extension to K for K|L finite
unramified. 69
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= (OFn [Υn])
∆1=∆2 . 180

S∞

= lim←−n Sn. 186

f⊗R

Tensor product over the ring R, where f is an endomorphism of R and the
module on the left is considered as right R-module via f while the module on
the right has its usual left-operation from R. 73
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L
⊗R

Tensor product in the derived category over the ring R. 155

TGφ

Tate module of Gφ. 52

Θn

Galois group of F∞|Fn. 187
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Surjective homomorphism from W (OC[
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τ(π̃L − πL). 171

tLT

= logLT(ωφ). 172
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Category of topological abelian Hausdorff groups with a continuous action from
a profinite group G together with continuous group homomorphisms respecting
the action from G. 23

TOPG,M

Category of topological abelian Hausdorff groups with commuting continuous
actions f rom a profinite group G and a topological monoid M together with
continuous group homomorphisms respecting the actions from G and M . 23

Tot(A•,•)

Total complex of the double complex A•,•. 30

Totn(A•,•)

n-th object of the total complex Tot(A•,•) of the double complex A•,•. 30

Trn

Trace map of Fn|Fn−1. 184
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U(G;H)

Open subgroups of a profinite group G containing H, which is a closed, normal
subgroup. 141

U(G)

= U(G; {1}) for a profinite group G. 141

Υ

Galois group if F∞|F , where F |L unramified. 169

ΥFn|F

Galois group of Fn|F , where F |L unramified and Fn|F is the unique unramified
extension of degree pn. 169

VK|L

Functor from Modét
ϕ,Γ(AK|L) to Rep

(fg)
OL

(GK) with VK(M) =
(
A⊗AK|L M)Fr⊗ϕM=1

)
;

defining an equivalence with inverse MK|L (K|L finite). 74

W (·)L

Ramified Witt vectors over L with L|Qp finite. 52

X•
cts(G,A)

the complex with objects Xn
cts(G,A) and differentials ∂cts. 13

Xn
cts(G,A)

= Mapcts(G
n+1, A) for an topological abelian Hausdorff group A with a contin-

uous actions from the profinite group G. 12

ξ

= τ(π̃L)− πL, where τ denotes the Teichmüller Lift. 171

Ξn

Galois group of Fn|Fn−1. 184

Zp

Integral p-adic numbers. 51
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