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Abstract

The main focus of the present thesis lays on general Lubin-Tate (¢, I')-modules.
Before heading towards this theory, we discuss some general facts about monoid and
continuous group cohomology as well as double complexes and limits of complexes.

After these preliminaries we first show as in the classical case that the category of
étale (p,T')-modules is equivalent to the category of Galois representations of the
absolute Galois group of K with coefficients in Oy, where K|L and L|Q,, are finite
extensions.

Using (¢, I')-modules, we then compute Iwasawa cohomology of such a representation
and define a reciprocity map. Afterwards we compute the Galois cohomology groups
using (¢, I')-modules. To do this, we construct two complexes of (¢, I')-modules whose
cohomologies each coincide with the cohomology of the attached Galois representation.
One of these two complexes is constructed by using the operator ¢ the other one by
using the operator ¢. Finally, we construct a regulator map for an O x Z,-extension
of L.

Kurzdarstellung

Der Schwerpunkt der vorliegenden Arbeit liegt auf allgemeinen Lubin-Tate (¢, I')-
Moduln. Bevor wir uns dieser Theorie widmen, behandeln wir einige allgemeine
Aussagen tiber Monoid- und stetige Gruppenkohomologie sowie {iber Doppelkomplexe
und Limites von Komplexen.

Nach diesen Vorbereitungen zeigen wir wie im klassischen Fall zunéchst, dass die
Kategorie der étalen (¢, I')-Moduln dquivalent ist zur Kategorie von Galoisdarstel-
lungen der absoluten Galoisgruppe von K mit Koeffizienten in O, wobei K|L und
L|Q, endliche Erweiterungen sind.

Danach wird mithilfe von (¢,T')-Moduln Iwasawa Kohomologie einer Darstellung
berechnet und eine Reziprozitdtsabbildung definiert. Anschliekend wird die Ga-
loiskohomologie einer Darstellung mit (¢, I')-Moduln berechnet. Hierzu werden zwei
Komplexe von (¢, I')-Moduln konstruiert, deren Kohomologie dann jeweils der Ga-
loiskohomologie der zugehdrigen Darstellung entspricht. Einer dieser beiden Komplexe
wird zu dem Operator ¢, der andere zu dem Operator 1 gebildet. Den Abschluss der
Arbeit bildet die Konstruktion einer Regulatorabbildung fiir eine O x Z,-Erweiterung

von L.
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CHAPTER 1

INTRODUCTION

One of the most interesting and most studied objects in algebraic number theory
are absolute Galois groups. Since these groups are far away from being easy to
understand, mathematicians discovered lots of paths to describe them in numerous
ways and to reveal their secrets. An often used tool are the representations of these
groups and the corresponding cohomology groups.

Let p be a prime number and fix an algebraic closure Q, of Q, and let C, be the
p-adic completion of @,. Assume that all algebraic extensions of Q, are inside Q.
Furthermore, L|Q, be a finite extension, Oy, its ring of integers and 77, be a prime
element of Op.

The p-adic Hodge theory, studies representations of (infinite) Galois groups with
values in L or its ring of integers Oy. Fontaine then established a new sight on these
p-adic Galois representations as he showed that étale (¢, I')-modules are equivalent to
p-adic Galois representations (cf. [FO10, Theorem 4.22, p.82]) over Q, (or Z;). One
great benefit of this construction is that (¢,I')-modules are objects of (semi-)linear
algebra and therefore relatively easy to understand. However, this comes at the cost
of a more complicated coefficient ring. For the construction of this coefficient ring,
Fontaine used the cyclotomic extension of Q. In a natural way then there arose two
questions: First, if there is a similar construction of (¢, I')-modules for Lubin-Tate
extensions (since the cyclotomic extension is a special case of Lubin-Tate extensions)
and second, if there is a category of (p,I')-modules which is equivalent to Galois
representations over a finite extension of Q, or its integers. In 2009 Kisin and Ren
answered both questions with "yes" (cf. [KR09, Theorem (1.6), p.446]) and in 2017
Schneider gave a proof in full detail (cf. [Sch17, Theorem 3.3.10, p.134]). While
Schneider’s proof covers the case of representations of G, (the absolute Galois group

of L) with values in Oy, Kisin and Ren stated the result also for subgroups of Gy, i.e.



absolute Galois groups of finite extensions of L. In this work, we generalize Schneider’s
proof to the latter case, i.e. to the case where the considered representations are
the representations of G, where K|L is finite, with values in Op. Before giving the
exact statement of the theorem, we should say a word about what I' is and about
the coefficient ring of our (¢, I')-modules. We start with I'. We are interested in
certain algebraic extension of L with Galois group isomorphic to OF. We fix such
an extension and denote it by Lo. In the classical theory this is Qp(ppe), i.e. the
extension of all p™-th roots of unity. In the general case, L, is the union of the
extensions generated by the roots of the powers of so called Frobenius power series.
These are power series with coefficients in O, such that they are congruent to 7y X
modulo degree 2 and congruent to X% module 770 [X], where ¢, is the cardinality
of Or/(mr). The classical case fits also in this theory since (X — 1)P — 1 fulfills the
above requirements and if « is a root of its n-th power, then « + 1 is a p™-th root of
unity, i.e. the field extension generated by the roots of its n-th power coincides with
the extension of p"-th roots of unity. Anyway, the Galois group of L|L is denoted
by I';, and the one of @]LOO by Hjp. Furthermore, we let K|L be a finite extension
and denote let K, = K Lo, We then denote by 'y the Galois group of K |K and
by H the one of Qp|Kxo.

For the coefficient ring, let (CZ = Tglexp Oc,/pOc, be the tilt of C, and denote by
W((CZ) 1, the ramified Witt vectors with respect to L. Then we start with the ring

AL lim 01/770L((X))
neN

which can be realized as a subring of W(C;)L (cf. [Schl7, p.94]). Next, we consider
A = (AM)", where AY" is the maximal unramified extension of Ay, inside W(Czb,) L
and ()" denotes the completion with respect to the p-adic topology. Since (C;7 has
characteristic p, it has a Frobenius homomorphism and since G, acts on C,, it also
acts on (CZ. By functoriality, W((CZ) 1, then also has a Frobenius and an action from
Gr. Both carry over to A. Therefore we can define the ring Ak = AT which
then also has a Frobenius, denoted by ¢k |z, and an action from I'x = Gk /Hf.
We should also say a word about topologies. Both, the endomorphism ¢, and
the action from 'k are continuous with respect to the so called weak topology on
A - This is the subspace topology from W(CZ) L, Where CZ carries the topology of
the projective limit and each Oc,/pOc, carries the discrete topology. W(C;) 1, then
carries product topology. Under the above isomorphism for A, the weak topology
of Ay is generated by the sets (c.f. [Schl7, p.79] and [Sch17, Proposition 2.1.16,
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p. 95-96])
XnOL[[X]] + WEAL.

The weak topology on A/, has the same structure (cf. Corollary 3.3.4) and it
coincides with the weak topology considered as Ar-module (cf. Proposition 3.3.5).
For this theory, we cannot work with the p-adic topology, since, for example, the G-
action on W(Clbj) 1 is not continuous with respect to the p-adic topology on W((CII’D) I
(cf. [Sch09, Bemerkung 3.2.11, p. 106]). In Section 3.3 we study weak topologies on
both, the coefficient ring Az, and its finitely generated modules in detail.

A (p,T')-module over Ay, then is a finitely generated A ;-module M together
with a semilinear action from I'c and a @ |z-semilinear endomorphism . M is

called étale if the linearized homomorphism
AK|L QOK|L®AK|LM —_— M? a ® mb— agOM(m)

is bijective. Here oL QA means that Az, is considered as A z-module via
¢r|r- The theorem then reads (cf. Theorem 3.9.1):

Theorem A.

The categories Repgi)(GK) and ModiF(AmL) are equivalent to each other. The

equivalence is given by the quasi invers functors

f s
Mgir: Repéf)(GK) —— Mod{'r(AkL)
Vi (A®y, V)x

and

é f
VL Modg r(AkL) Repéf) (Gk)

Fropm=1
M (A, W)

This is the generalization to finite extensions of @, and to Lubin-Tate (¢,T')-
modules of Fontaine’s original equivalence of categories. In the above equivalence one
can see that the change to a subgroup on the side of Galois representations translates
into a change of the coefficient ring, the involved group I' and the endomorphism ¢
on the side of (¢,I')-modules. In Section 3.4 we study the structure of the coefficient
ring for unramified extensions and in Section 3.5 for general extensions.

In the following chapters, we use these general (¢, I')-modules to calculate Iwasawa
and continuous cohomology for a representation of Gx with coefficients in Op,
establish a reciprocity law, which generalizes the corresponding reciprocity law from
Schneider and Venjakob (c.f. [SV15, Theorem 6.2, p. 32]) and construct a regulator



map, which interpolates the regulator maps from [SV19, Section 3.1, p. 71-74].

In Chapter 4 we start with taking a closer look at [SV15|. Using the original result
of Coleman (cf. [Col79, Thm. A, p.92|) allows us to generalize Schneider’s and
Venjakob’s work to the case of a finite and unramified extension K of L. Since K|L
is unramified, it as a Galois extension with cyclic Galois group, generated by the
Frobenius oz, which is a lift from the Frobenius of the corresponding residue class
field extension. Thankfully, their original work is very detailed and so our main task
was to study what the input from the Frobenius is. The short version is: The results
do not really change, sometimes there is a shift by the Frobenius, but that’s exactly
what one needs to establish these results in this bigger generality. That the Frobenius

is involved is a consequence of Proposition 3.4.6. There we see that we have

PK|L = OK|L° ¥L

on Ak, ¢\ is the p-operator of the (¢, I')-modules over A, and ¢, the one of
the (¢, I')-modules over Ay. We then also introduce a i operator by

L 1 om
_ L -
¢K\L 7TL<PK|LO )

where Tr is the trace map of the finite extension By |0k, (B|z). One of the results
in this chapter then is the relation of this -operator to the Iwasawa cohomology of

an Op-representation of G (cf. Theorem 4.3.13):

Theorem B.
Let V € Repgf)(GK), T = chchTl and 1 =y, (v(z-1))- Then we have an ezact
sequence

_ p—id _
0 Hy, (Ko K, V) = Mg (V(r™ 1)) —— Mg (V(r™1)) = Hi (Ko K, V) =0,
which is functorial in V.

Furthermore, each occurring map is continuous and O [l k]-equivariant.

Here we have 7 = chcXE%> where xcyc denotes the cyclotomic character and
xrr: 'z = Oz the Lubin-Tate character. The chapter then concludes in the following
reciprocity law (cf. Theorem 4.4.2).
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Theorem C.

The following diagram is commutative:

. * —K,®ld *
(m, K) @, T s HE, (Koo K, 01,(7))

x EXp*

(Ag)¥=".

R

Here, Exp* denotes the homomorphism induced from
Hllw(Koo|K> OL(T)) — MK\L(OL) = AK|L

from the above Theorem B (respectively from Theorem 4.3.13), T™ is the representa-
tion module of XET17 i.e. T is isomorphic to O, as Op-module and carries an action
from T'x by v -t = xpr(y)"'t. One can proof that there is a natural isomorphism
H (Kso|K,V ®0, T*) = Hi (Ks|K,V)®0, T* (cf. Remark 4.3.10). Together with
V ®o, T* = V(xr) and the Kummer isomorphism lim K} = H} (Kyo|K,Zy(1))
this then induces the horizontal homomorphism in the above diagram. Note that
@n K¢ denotes the norm field of K, i.e. the projective limit is build with respect
to the norm maps K11 — K,,. Then lgln K¢ is the multiplicative group of a field
(cf. [Win83, 2.1.3 Théoréme, p.65-66]). In the key lemma (cf. Lemma 4.4.4) of the
above theorem a Frobenius is involved again, which does not appear in the original
work. We then end the section (and the chapter) by explaining at which part of the
proofs this Frobenius comes in and that it has to be there.

In Chapter 5 we study how to compute Galois cohomology using (¢, I')-modules.
In the classical theory, this is well known and is one of the benefits of (p, I')-modules:

If V' is a Zjp-representation of G'i, then the complex

(f=1y-1) (y=1)pr;—(f—1)pry

0 — Mg|g, (V) Mg, (V) & Mg, (V) Mg, (V) —0

computes the group cohomology of Gx with values in V', where f can be both, ¢ or
its left-inverse 1 and where + is a topological generator of I' (cf. eg. [Col04, Theorem
5.2.2., p.93-94] and [Col04, Theorem 5.3.15, p. 103-104]). These complexes are often
called Herr complexes. Moreover, the complexes for ¢ and 1 are quasi-isomorphic
(cf. [Col04, Proposition 5.3.14, p.103|). While one has the exact same results for
Lubin-Tate (¢, I')-modules over Ag, (cf. [Kupl5, Satz 2.20, p. 41-42] respectively
|[Kupl5, Satz 2.26, p.48| and [Kuplh, Satz 2.27, p.48|) one could not expect that

this is also true for Lubin-Tate (¢, I')-modules corresponding to representations over



a finite extension of @, since in this case the ¢-operator is no longer a left inverse
to ¢ (cf. Remark 4.2.3). In summer 2019 Aribam and Kwatra published a partial
result. They showed, that a generalized Herr complex with respect to ¢ computes the
Galois cohomology of a torsion representation with coefficient ring O, where K|Q,
is finite (cf. [AK19, Theorem 3.16, p. 10-11]). In this thesis we go a step further and
prove that for an arbitrary finitely generated Op-representation V of Gk there is a
complex of the corresponding (¢, I')-module, of which the cohomology is exactly the
continuous group cohomology of G i with coefficients in V. In our proof, we followed
the idea of Scholl in [Sch06, Theorem 2.2.1, p. 702-705|, generalized his proof to our
setting and added all the details. By C=

%<(G, A) we denote the continuous cochain

complex of a profinite group GG with values in the abelian group A. Furthermore, for
M e Modir(AKw) we denote by €% (I'x, M) the total complex of the double

PK|L
complex

C* (T on)—id
8 (Dge, M) ool ce (0 )

C C

and by 3% (I'x, M) its cohomology. The exact statement of the theorem then is

PK|L

(cf. Theorem 5.1.11):

Theorem D.
Let V € Repgi)(GK) and set M = M (V). Then there are isomorphisms

H:(Gr, V) —= 35 (T, M),

YKL

(=23

%
Hcts

(HKv V)

g—CZ;K\L (M)
These isomorphisms are functorial in V' and compatible with restriction and corestric-

tion.

The idea of the proof is the following: First, we show that for discrete V the
complexes es.omL(FK’M”) and C,

Ch(Gk, A/ ngJr ®o, V/m'V). Here, the latter complex is defined in an analogous
way as above and M,, = J\/EK|L(V)/(ng+ ®p, V)HK. These quasi isomorphisms are

(Gk,V) are quasi isomorphic to the complex

induced by the short exact sequence

Freidy —id
_—

0—>V—>A®y, V A®g, V—>0

respectively by the canonical inclusion Mg (V) <+ A ®p, V. In particular, both
quasi isomorphisms have target Cp. (G, A/ng+ ®p, V/m*V). After that, we take

projective limits with respect to m and n and check that everything behaves well.
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In the second part of Chapter 5, we head towards the computation of the Galois
cohomology using the i-operator. Since ¢ and v are related to each other under
Pontrjagin duality (cf. [SV15, Remark 5.6, p.27]), it seems to be the correct way,
to dualize the complex of ¢. In a first attempt we tried to imitate the methods of
Herr (cf. [Her01, Lemme 5.6, p.333]) to establish a quasi isomorphism between the
complexes of (p,I')-modules related to ¢ and 1 using Tate duality. This approach
requires to show that all the differentials of the p-Herr complex have closed image,
which implies that they are strict which then implies that the cohomology groups of
the dualized complex coincide with the dual of the cohomology groups of the complex
we started with. In his original work, Herr checked that the differentials have closed
image for each differential separately (cf. [HerOl, p.334]). Unfortunately, in the
general case we have to deal with direct products of Herr’s differentials and modules
and it is no longer clear, that the differentials have closed image.

Our second attempt then was successful. Here we imitated results of Nekovar (cf.
[Nek07, Sections (8.2) and (8.3), p.157-160]) to replace the complex Cg (Hk, A)
(Gk, Fr(A)) of A = Op[T k]-modules, where A = V"V is the

dual of some Gg-representation. Here "replace" means, that the two complexes

with a complex Cg
are quasi isomorphic (cf. Proposition 5.2.21). This then has the advantage that we
can apply the Mattlis dual Dg = Homy, (—, A),) to this complex. Nekovai proved
that this dualized complex is quasi isomorphic to a complex computing the Iwasawa
cohomology (cf. Lemma 5.2.44). We then finally check, that the complex related to
1) is quasi isomorphic to this dualized complex. To do this, we use Theorem 4.3.13
and therefore we have to assume that K|L is unramified. Using again a result of

Nekovar , we then get the following statement (cf. Theorem 5.2.52).

Theorem E.
LetT € Repgf) (Gk) and let K C K' C Ko an intermediate field, finite over K, such
that T = Gal(Koo|K') is isomorphic to some Z;,. Then we have an isomorphism

in DT(0-Mod)

RI(C (Mo (T(r 1)) §a,, Op = RI% (G, T).

Here we use the following notation. If €® is a bounded below complex of abelian
groups (or of R-modules for a suitable ring R), then we denote by RI'(C®) the
same complex viewed as object in the derived category DP(Ab) (respectively in
DP(R-Mod)). Furthermore, by manipulating the representation on the right hand
side we can replace the above complex of cochains of Gi by a complex of cochains

of Gi (cf. Corollary 5.2.54). To be more precise, Shapiro’s Lemma induces an



isomorphism in D*(07-Mod)
Rrgts(GKU T) = RF;ts(GK> T ®o, OL[GK/GK’Da

where G acts diagonal on T' ®o, Or[Gk /G k).

In Chapter 6, which is the last chapter of this thesis, we generalize the regulator map
of Loeffler and Zerbes of [LZ14a] to the case of a general Lubin-Tate extension. For
this, let F'|L be a finite, unramified extension, Fi the unique unramified Z,-extension
of F and T = Gal(F|F'). We then fix some additional notation, introduce more
of Fontaine’s period rings and introduce crystalline and analytic representations as
well as explain the notion of Q- and L-analytic functions and their continuous duals,
the distributions. We denote the Q,-analytic distributions of T with values in C,, by
Dq,(T,C,) and the L-analytic distributions of I';, with vales in C, by Dr(I'r,C,).
Afterwards, we recall a result from [Picl8] about the existence of an integral normal
basis generator (i.e. an integral element whose powers are a normal basis), which
says, that for finite and unramified Galois extensions over L such an integral normal
basis generator always exists. Unfortunately we have to assume p # 2 for this. Then
we introduce the Yager module, which turns out to be a free rank 1-module over
the Iwasawa algebra of T over O and subsequently we introduce Wach modules
and show that a Wach module over Of_ is linked to the Wach module over O and
the Yager module. Then we are almost prepared to introduce the Regulator map
but we still have to face one detail, which is not known to be true in the general
Lubin-Tate setting. This is, if there exists an Ap-basis (u1,...,u,) of pr(Ar) such
that 11 (u;) = d1;. But an analogous result is known for the Robba ring and its plus
part. This together with results from [SV19] then allows us to introduce a regulator
map similar to the one of Loeffler and Zerbes. Roughly (the full statement involves
to many details for an introduction - for the full statement see Theorem 6.6.7) the

theorem then is.

Theorem F.
LetT € Repgis’an(GL) and V = T[1/71] with nonnegative Hodge-Tate weights and
such that T has no quotient isomorphic to the trivial representation. Then we have a

regulator map
LV HY (FooLoo|L, T) — Dp(T'r, Cp)&0, Do, (T, Cp) @1 Deris . (V(T71).

This map interpolates the corresponding requlator maps for all finite intermediate

fields of Fx|F.



CHAPTER 2

PRELIMINARIES

By N we denote the natural numbers starting with 1 and we let Ngo = NU {0}. For a
homomorphism f: A — B we denote by ker(f) its kernel, by im(f) its image and by

coker(f) its cokernel.

2.1 ON CONTINUOUS GROUP COHOMOLOGY

First, we want to recall some basic facts from topology.

For topological spaces X, Y we endow the set of continuous maps Mapeis(X, Y') always
with the compact open topology (cf. [Bou89b, Definition 1, Chapter X §3.4, p.301]).
Note, that in this topology Map.(X,Y) is a Hausdorff space if Y is (cf. [Bou89b,
Remarks (1), Chapter X §3.4, p.301-302]). For K C X compact and U C Y open
denote by M(K,U) the set of all f € Map(X,Y) with f(K) CU.

Theorem 2.1.1.
Let X,Y, Z be topological spaces and f: X XY — Z a map. If f is continuous, then
also the map f: X — Map.(Y, Z) is continuous, where (f(z))(y) = f(z,v).

]ff~ 1s continuous and Y s locally compact, then also f is continuous.

Proof.
This is [Bou89b, Theorem 3, Chapter X §3.4, p. 302-303|). O

Corollary 2.1.2.
Let X andY be topological spaces and X locally compact. Then the evaluation map
ev: X x Map(X,Y) =Y, (z, f) — f(z) is continuous.

Proof.

Since X is locally compact Theorem 2.1.1 says that the continuity of ev is equivalent



10 2.1. ON CONTINUOUS GROUP COHOMOLOGY

to the continuity of
é{/: Mapcts(Xay) - Mapcts(Xa Y)> (é{/(f))(l‘) = ev(m, f) = f(.’L‘)

But ev is the identity of Map.(X,Y") and therefore continuous. O

Proposition 2.1.3.
Let X,Y, Z be topological spaces, X Hausdorff and Y locally compact. Then there is

a homeomorphism
Ma‘pcts(X X Y? Z) - Mapcts (X7 Ma‘pcts(Y7 Z))

which  is  given by the restriction of the  canonical  bijection
Map(X x Y, Z) — Map(X,Map(Y, 2)).

Proof.
This is [Bou89b, Corollary 2 to Theorem 3, Chapter X §3.4, p. 303-304]. O

Definition 2.1.4.
Let M be a monoid and A an abelian group. We say that M acts on A if there is a
map

T MxA——A
which fulfills the following conditions:
1. 137 -a=a for all a € A.
2.m-(a+b)=m-a+m-bforalme M and a,b € A.
3. (mn)-a=m-(n-a) for all m,n € M and a € A.

If M is a topological monoid and A is a topological Hausdorff abelian group, then we

non

say that an action is continuous if the above map is continuous.

Proposition 2.1.5.

Let G, H, A be topological groups such that H is locally compact and A is abelian and
Hausdorff. Let furthermore G act continuously on both H and A. Then G also acts
continuously on Map.(H, A), where for o € G and f € Mapy(H, A) the action is

given by (o - f)(h) = o(f(o7}(R)))-

Proof.
First we should check that the action is well defined, i.e. we show that for o € G and
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f € Map(H, A) we have o - f € Map.(H, A). So, let 0 € G and f € Map_(H, A).

Then the map o - f can be written as composite of the following maps:

H H A A
h+——s o~ 1(h)

h——— f(h)

at+——o(a).

The first of these maps is continuous since inversion in G is continuous and G acts
continuously on H. The second one is f and therefore continuous. The last one is
continuous since G acts continuously on A. So, in conclusion ¢ - f is a continuous
map from H to A.

For the continuity of the group action, we have to show that the map
G x Mapcts(j_L A) - Mapcts(H7 A)? (07 f) 0" f

is continuous. Since H is assumed to be locally compact this is equivalent to the

continuity of the map
G x H x Mapcts(H7 A) - Av (Ua h7 f) — O'(f(O'_l(h)))

(cf. Theorem 2.1.1). This last map can be written as the composite of the following

maps:

A

G x H x Mapgs(H,A) — G x H x Map(H,A) —— G x A

(O’, h7 f) e (07 f(h))

(0,a) ———=o(a).

The first of these maps is continuous since G is a topological group (therefore inversion
is continuous) and G acts continuously on H. The second map is continuous since
evaluating functions with a locally compact domain are continuous (cf. Corollary

2.1.2). The last map is continuous since G acts continuously on A. O

Definition 2.1.6.
Let G be a profinite group and A an abelian topological group on which G acts
continuously. We say that A is G-induced if there exists an abelian topological

group B together with a continuous action of G, such that A = Map.(G, B).
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Lemma 2.1.7.
Let G be a profinite group and A an abelian topological group on which G acts

continuously. Then the complex
0—=A—— Mapcts(Ga A) - Mapcts(GQ’ A) - Mapcts(G?’a A) -

15 exact.

Proof.
At [NSW15, (1.2.1) Proposition, Chapter I §2, p.12-13| is a proof for discrete group
cohomology. For continuous cohomology it’s literally the same, but one should check

(in both cases) that the maps

Dn : Mapcts(Gn+27 A) Mapcts(Gn+17 A)’

T [(00,...,00) = x(1,00,...,04)]

are well defined, namely that D"(z) for + € Map(G"*2, A) is continuous. For
this, let U C A be open and z € Map,(G"2, A). Then x=}(U) C G"*?2 is open
and so is 7 H(U) N {1} x G" in {1} x G"*!. Since the canonical projection
n: {1} x G — G is open, the set n(x~1(U) N {1} x G"!) is open in G™*1.
The claim is, that this is exactly (D"z)~1(U), which then proves the continuity of
Drx.

To see this, let (0q,...,0,) € (D"2)~1(U). Since D"z (0, ...,0n) = 2(1,00,...,04)
it follows (1, 00, ..,0,) € 2~ 5(U) and we have n(1, 09, ...,0,) = (00, . - . ,0n), which
means that (0, ...,0,) € n(z~HU) N {1} x G*L).

Conversely let (oq,...,0,) € n(z71(U) N {1} x G"). Then we clearly have
(1,00,...,0,) € 2~ Y(U). Since z(1,00,...,0,) = D"z(01,...,0,) we immediately
obtain (o, ...,0,) € (D"x)~Y(U). O

Remark 2.1.8.

We want to recall the continuous standard resolution from [NSW15, Chapter II, §7,
p. 136-137] and fix the notation.

Let G be a profinite group and A a topological Hausdorff abelian group with a contin-

uwous action from G. Let for n € Ny

chs(Gv A) = Mapcts(Gn+1v A)
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and % X"l 4 xn

cts * cts cts

be the differential , which is given by

n

(@) (00, 00) =D (=1)'x(00,..., 64, .., 0n),

1=0

n-

where " means that the corresponding element is omitted. Furthermore, we denote

by X&(G, A) the corresponding complez, i.e.

o s ! n—1 Alks n o
Xcts<G7 A) =T Xcts (G7 A) - Xcts(G7 A) -
As usual, we then set
Ciis(G, A) = X (G, A)C

One checks that O%

cts
then let Co (G, A) be the complex

restricts to a homomorphism C" 1 (G, A) — CZ,

(G,A). We

R %' 1 s m ot
Ccts(G? A) =T Ccts (G7 A) - Ccts(G7 A) -

This complex is called the continuous standard resolution of G with coefficients in
A. We denote its n-th cohomology group by H\ (G, A) and call it the n-th continuous
cohomology group of G with coefficients in A.

Proposition 2.1.9.
Let G be a profinite group and A be an abelian topological group on which G acts
(G,Maps(G,A)) =0 for alln > 0.

continuously. Then HJ

Proof.
The proof for the discrete case is at [NSW15, (1.3.7) Proposition, p. 32|. By proving
that the involved maps are well defined, this proof transforms to our situation. In

particular, we will show that the maps

Mapcts(Gn+17 Mapcts(G7 A))G Mapcts(Gn+17 A)
x = [(0y...,0n) = x(00,...,00)(1)]
[(00,...,00) — [0 a(ylclog...c7 on))]] 5 Ly

are well defined and inverse to each other. For this, we will write a, = a(z) and

By = B(y)-

For the well definedness we have to show that the maps a,, 8, and Sy(0o,...,0n)
are continuous for all z € Map,(G"", Map. (G, A)), y € Map.(G"*, A) and
(00...,0n) € G as well as 3, is fixed by the operation of G.
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So, let € Map . (G""!, Map(G,A)), U C A open and (oy,...,0,) € G"H!
such that x(og,...,0,)(1) € U, i.e. (00,...,00) € az (U). We then clearly have
z(og,...,0n) € M({1},U). Since z is continuous, there exists an open V' C G"*! with
(00,...,04) €V such that V. C 2=} (M({1},U)). But then we also have V C a;1(U),
which prooves the continuity of .

Now let y € Mapg(G™™, A). Theorem 2.1.1 says that 3, is continuous if the map

Gx Gl ——~ A (0,(00,...,00)) —=o0(y(ctog,...,07 ay))

is continuous. This map can be written as the composite of the following maps

GxGtl — . G@xG'tl—~Gx A

(0,7) —— (0,07t 7)

A

(0,7) —(o,y(7))

(0,a) ——o(a).

The first of these maps is continuous because inversion in G is continuous and
multiplication in G is continuous, therefore the componentwise action of G on G™*1
by multiplication is also continuous. The second map is continuous since y is and the
last map is continuous since G acts continuously on A. In conclusion 3, is continuous.
Next we show that 3, is fixed under the operation from G. Let for this 7,0 € G and

7 € G, Then we have:

(1 By)(T))(0) = (- (By(n~'7))) (0)
By(n~tr) (™" 0))

i.e. By is fixed under the operation of G.

Let now additionally 7 := (09, ...,0,) € G" and U C A be open. Let o € G such
that B,(7)(c) = o(y(c~1-7)) € U. First note that 8,(7)(c) = (¢-y)(7) and that o -y
again is continuous (cf. proof of Proposition 2.1.5). Then, since o -y is continuous and
Gt is compact (since G is a profinite group) and therefore also locally compact, it
exists a compact neighboruhood K C G™*1 of 7 such that (o-y)(K) C U (cf. [Bou89a,
Corollary to Proposition 9, Chapter I §9.7, p.90]), i.e. o -y € M(K,U). Since G acts
continuously on Map(G™" ™!, A) (cf. Proposition 2.1.5) then exist open sets V C G
and W C Map(G™*1, A) such that 0 € V, y € W and V x W C Map,,(G"!, A).
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Especially we have -y € M(K,U) for all n € V and since 7 € K we then get
By(T)(m) = (m-y)(t) € U for all n € V, i.e. V is an open neighbourhood of o
contained in S, (7)1 (U), so B,(7) is continuous.

The rest of the proof now follows [NSW15, (1.3.7) Proposition, p. 32|, but here we
use continuous cohomology. We actually proved that for every n > 0 we have an

isomorphism of groups
Mapcts (Gn7 MapctS(G7 A))G = XCtS (Gn’ A) :

We want this to be an isomorphism of complexes, so we have to check that it commutes
with the corresponding differentials. Thus, we have to check that for all n > 0 the

following diagrams commute:

Mapcts(Gnv Mapcts(G7 A))G = Mapcts(Gna A)

| .

Mapcts(GnJrlv Mapcts(Gv A))G 4&> Mapcts(Gn+17 A)

and

n B n
Mapcts(G ’ A) Mapcts(G ) Mapcts(Gv A))G

n B n
Mapcts(G +17 A) - Mapcts(G +17 Mapcts(Gﬂ A)>G

So, let & € Map,s(G™, Map.(G, A))¢. Then it is

n

(a0l )(x)(0o0,...,00) = Z(az(o’o, ey Oiy ey o)) (D).

i=0
On the other hand, we have
a(z)(ooy...,0n—1) = x(00,...,0n-1)(1)
and therefore
(0hsoa)(x) (00, ... ,00) = ” a(z)(00y ...y Tiyennyop) = ” (00, .oy Oy yon)(1),
i=0 i=0

i.e. the first diagram commutes. For the second diagram let y € Map_(G™, A). Then
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=0
n —_—
- Za(y(ailach U_lgi7 , O lan))
=0

On the other hand we have
(B0 08 (1)(00.- -, 2)) (0) = (6" (W) (0 00, .., 0 107)

-1
<Zya 00y O 101, e Un)>,

i.e. the second diagram commutes. Thus, we have an isomorphism of complexes
Cc.ts(Gv Mapcts(G’ A)) cts(G A)
The complex X2 (G, A) is exact (cf. Lemma 2.1.7) and therefore we have

cts(G Mapcts(G A)) Hn(cc.ts(Ga Ma‘pcts(Gv A))) Hn(Xc.ts(Gv A)) = 0.

Lemma 2.1.10.
Let G be a profinite group and A a G-module. Then for all n > 0 the G-module
Map.s(G™, A) is G-induced.

Proof.

Since G is Hausdorff and compact Proposition 2.1.3 says that the canonical maps

o)

Mapcts(Gn7 A) Mapcts(G7 Mapcts(Gn_lv A))?
i @ 0= [(01,...,0n-1) — f(o,01,...,0n-1)]]

[(o1,...,00) = f(o1)(o2,...,00)] 5 i f

are homeomorphisms. These maps are also compatible with the group structure on
both sides. To see this for « let f,g € Map,(G™, A) and 0,01,...,0,—1 € G and
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compute:

(alf+9)(0))(o1,.,0n1) = (f +9)(0,01,...,0n-1)
= f(o,01,...,0n-1) +9(0,01,...,0n-1)
= (a(f(0)) + alg(e)))(o1,. ., on-1)
= ((a(f) + alg)(o)) (o1, .-, on1).

For B let f,g € Map(G,Map.(G" 1, A)) and 01,...,0, € G and compute:

B(f+g)(o1,....,0n) = (f+9)(01)(02,...,00)
= (f(o1) + g(o1))(o2, ..., 00)
= f(o1)(o2,...,0n) + g(o1)(02, ..., 00)
= B(f)(o1,-..,0n) + B(g) (01, .., 00)
= (B(f) + B(9)) (o1, 0n).

Last we have to see that these maps are compatible with the operation of G. Let
T,0,01,...,0n € G and f € Map,(G", A). Then we compute

((alr- ))(o)(o1,- - y0n-1) = (7 f)(0,01,...,00-1)

=7(f(r o, 77 or, . T o))
((al(f)(r o)) (7 o, .. 7 o))
= (1-a(f)(r o)) (o1, on-1)
= ((7-a(f)(0)(o1, ..., 0n-1),

ie. itis a(r- f) =7-a(f). Let now f € Map(G, Map.(G", A)) and compute

B(r-flor,...,on) = (7 f)o )(0’2,---, n)
=((r- N o1))(o2, .., 00)
=7(f(rto)(r oy, ..., 7 on))
=7(B(f)(r o, ..., 7 o))

T-B(f)(o1,...,00),

ie. it is (7 - f) = 7 - B(f). In conclusion we have shown that Map.(G™, A) and
Map,s(G, Map (G, A)) are isomorphic as topological G-modules and therefore
Maps(G", A) is G-induced. O
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Lemma 2.1.11.
Let G be a profinite group and A a G-module. Then for all n > 0 we have an

isomorphism
Mapcts(Gn+1v A)G MapctS(Gnv A)
T (o1, on) = ([T 03)]
[(00,...,00) = on((f{_llffi)?:ﬂ Yy

of abelian groups.

Proof.

For discrete coefficients, this is stated at [NSW15, p. 14]. Since there is no proper
reference, we check that the homomorphisms are inverse to each other. That they
are well defined is obvious. Denote for this proof the upper homomorphism by f, the
image of 2 € Map(G"*', A)¢ by £, the lower homomorphism by g and the image
of y € Map,(G", A) by g,. Let furthermore oy,...,0, € G. We then compute

gfz(a-o, e, O'n) = Uofm(O'O_lo'l, ‘e ,O';_lla'n)
= 0oz(1, 07 ‘91,00 02,...,0G oy)
- IB(UO, .. '7Un)

where the last equation is true since z is fixed under the operation of G. For the

other direction we compute
fgy(ala e 7an) = gy(1701701027 <01 'Un)
=y(o1,...,0n).
So f and g are inverse to each other. O

Corollary 2.1.12.
Let G be a profinite group and let

be an exact sequence of topological G-modules such that the topology of A is induced
by that of B and that B — C has a continuous set theoretical section s: C — B.
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Then for all n > 0 the diagrams

0—— Mapcts(Gn_la A) - Mapcts (Gn_lv B) - Mapcts(Gn_la C) —0

| | |

0—— Mapets(Gn’ A) Mapcts(Gn’ B) Mapcts(Gn’ C) —0

and

0—— Mapcts<Gnﬂ A)G Mapcts(Gn7 B>G Mapcts(Gn7 C)G —0

| | |

0——> Mapcts(Gn+17 A)G - Mapcts(Gn+17 B)G - Mapcts(Gn+17 C)G —0

are commutative with exact rows and the latter diagram induces a long exact sequence

of continuous cohomology

0 AG BE c¢ HL (G A) —

n
o Hcts

(G, A) — H

cts

(G,B) —= H". (G,C) — H"TY(G,A) — - -

cts

Furthermore, the topology of Map.s(G™, A) is induced by the topology of Map.,(G™, B)
and the section s: C — B induces a continuous, set theoretical section
S Mapcts(Gn7 C) - MapctS(Gn7 B)

Proof.

First we want to see that the topology of Map..(G™, A) is induced from the topology
of Mapy(G™, B). Let K C G™ be compact and U C A be open. Then there exists
V C B open such that U =V N A. Then we have

M(K,U)=M(K,VNA)=MK,V)NM(K,A) = M(K,V) N Map.(G", A).

Since Maps(G™,—) turns continuous maps into continuous maps, the map
S« Map(G™, C) — Map(G™, B) induced from the continuous section s: C' — B
again is continuous (with the same argument are o, and [, seen to be continuous).

S« 18 a section as well, because for f € Map.(G™,C) we get

(Bx 0 8:)(f) = Bu(s4(f)) = Boso f=f

The commutativity of both diagrams is obvious, so it remains to check that they have
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exact lines. First, we want to show that the sequence
00— Mapcts (Gn7 A) - Mapcts(Gn? B) - Mapcts(Gn’ C) —0

is exact for all n > 0. For this, we obtain that a.(f) = au(g) for f,g € Map.s(G", A)
if and only if o o f = «a o g, which is equivalent to f = g since « is injective.
Furthermore, for f € Map.,(G", A) we have

(Beoa)(f) =Boacf=0,

since foa =0, i.e. it is im(ay) C ker(f,). For the opposite inclusion let f € ker(Sy).
Then it is B(f(z)) =0 for all z € G, i.e. it is f(z) € im(«) for all x € G™. We then
define a map g: G® — A by g() :== a~!(f(x)). This is well defined and continuous
since « is a homeomorphism from A to im « because we assumed that the topology
of A is induced by that of B. Last we have to see that (. is surjective. But for
f € Map(G™,C) we may set g := s,(f) = so f which then is a continuous map
from G™ to B with f,(9) = fog=Lfosof=f.

The exactness for the sequence
0 ——Mapes(G™, A)¢ —— Maps(G", B)® —— Map(G", C)¢ ——0
for n > 0 then follows with Lemma 2.1.11 and the exactness of
0 —— Map(G" ', A) — Maps(G" ", B) —— Map(G" 1, C) ——0.

As in [NSW15, Chapter I, §3, (1.3.2) Theorem, p.27| the long exact sequence of
cohomology then is an application of the snake lemma, here in its topological version
(cf. [Sch99, Proposition 4, p. 133-134]). O

2.2 MoNOID COHOMOLOGY

As described in the introduction, the aim of Chapter 4 is to compute Galois cohomology
using the theory of Lubin-Tate (¢, I')-modules. For this, we also compute the
cohomology of complexes like A E) A, where A is a topological abelian group and f
is a continuous endomorphism of A.

This can be embedded in the theory of monoid cohomology, which then allows us,
in the case of discrete coefficients, to write this cohomological functor as derived
functor. We then combine this with a usual group action, which commutes with the

endomorphism and obtain spectral sequences on cohomology.
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Proposition 2.2.1.
Let A be a topological abelian group and f € End(A) continuous. Then

= Nox A—— A, (n,a)— f"(a)

defines a continuous Ng-action on A.

Proof.

The properties 1.-3. of Definition 2.1.4 are immediately clear. For the continuity
let U C A be open and (n,a) € Ny x A such that f"(a) € U. Since f is continuous,
f™ is continuous as well and therefore (f*)~*(U) C A is an open set. But then
{n} x (fm)~Y(U) € Ng x A is an open neighbourhood of (n,a) contained in the

preimage of U under -. 0

Proposition 2.2.2.
Let M be a topological monoid and A be a discrete abelian group with a continuous

action of M. Then we have
AM = Homyp(Z, A),

as Z|M]-modules, where Z is considered as trivial Z[M]-module.

Proof.

We consider the following maps

AM < HomZ[M} (Z, A)
ar—"— [z 1 -a

f(1)<5—'f-

These maps are clearly homomorphisms and they are continuous and open, since
both, Z and A, are discrete.

1. « is well defined:
Let a € AM and m € M. With a it also is z - a € AM and therefore we have

m-afa)(z)=m-(x-a) =z a=ala)(r) =ala)(m-z),

i.e. a(a) is Z[M]-linear.

2. [ is well defined:
Let f € Homg(Z, A) and m € M. Since f is Z[M]-linear and Z is a trivial
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M-module, we then get

m- f(1) = f(m-1) = f(1),
ie. f(1) € AM,

3. aof= idHOHlZ[M] (Z,A)
Let f € Homgyy(Z, A). For x € Z we then obtain:

where the last equality is true, since f is Z-linear. This immediately gives

(a o 5)(.](.) - f7 Le. ao 5 = idHomZ[M](Z,A)'

4. foa =idym:
Let a € AM. Then we get:

ie. foa=idym.
O

We are mostly interested in the case of a discrete G-module A, where G is a
profinite group, together with an Nyp-action (which then automatically is continuous
since both, Ny and A are discrete), which comes from a G-homomorphism of A. To

shorten notation, we make the following definitions.

Definition 2.2.3.

Let G be a profinite group and M a topological monoid.

By DISr we denote the category whose objects are discrete abelian groups with a
continuous action of M and whose morphisms are the continuous group homomor-
phisms which respect the operation of M.

Similarly we denote by DIS« the category whose objects are discrete abelian groups
with a continuous action of G and whose morphisms are the continuous group homo-
morphisms which respect the operation of G.

And finally we denote by DI8g s the category whose objects are discrete abelian
groups, together with commuting continuous actions of G and M and whose mor-
phisms are the continuous group homomorphisms which respect the operations from
G and M.

The corresponding categories, whose objects are abstract abelian groups, are denoted
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by ABSys, ABSc and ABSa.

Furthermore, by TOPs we denote the category of topological abelian Hausdorff groups
with a continuous action from . The morphisms of this category are the continuous
group homomorphisms which respect the action from G.

Analogously we denote by TOPq as the category of topological abelian Hausdorff
groups with continuous actions from both, G and M, such that these actions commute.
The morphisms of this category are the continuous group homomorphisms which

respect the actions from G and M.

Remark 2.2.4.
Let G be a profinite group and M a topological monoid. Then the categories DISq m

and DISgxm coincide, where G x M is considered as a topological monoid.

Proof.

If A€ DISgxm then by g-a:=(g,1)-a respectively m-a = (1, m) -a for all g € G,
m € M and a € A we can define operations from G and M on A which then are
automatically continuous, since the action from G x M on A is continuous. Because
of (g,m) = (g,1)(1,m) = (1,m)(g, 1) for all g € G and m € M, it is immediately
clear that these actions commute. Therefore it is A € DISg .

If A € DISG M, then one can define an action of G x M on A by (g,m)-a :=g-(m-a).
Since the actions of G and M commute, this is a well defined G x M-action on A. It

is continuous, because it can be factored as the composite of the following maps

(GXM)xA——Gx A

(gam7a) '—>(gvm' a)

A

(9,a) ———g-a.

Since both of the above maps are continuous, so is their composite, which is the
action from G x M.

That the morphisms coincide is obvious from the definitions of the actions. O

Our aim now is to see that the category DISg v has enough injective objects. For
this, we follow the idea of [NSW15, (2.6.5) Lemma, Chapter I §6, p. 131] and outline

some details.

Proposition 2.2.5.
Let G be a group and M a monoid.
Then the category ABSg m coincides with the category of Z[G][M]-modules.

Proof.

The only question which maybe is not immediately clear, is: If we have a Z[G|[M]-
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module A, why do the operations from G and M commute. But this comes directly
from the definition of Z[G][M]. There we havs g-m =m-g for all g € G and m € M.

Therefore we have
g-(m-a)=(g-m)-a=(m-g)-a=m-(g-a)

forall g e G,me M and a € A. O

Corollary 2.2.6.
The category ABSg m has enough injectives.

Proof.

Since the category of R-modules for an arbitrary ring R has enough injectives, this is
an immediate consequence from Proposition 2.2.5. O
Lemma 2.2.7.

Let G be a profinite group, M a discrete monoid and A € ABSg m. Define

A(S — U AU
U<G open

Then A% € DISG M-

Proof.

We endow A? with the discrete topology and deduce from [NSW15, (1.1.8) Proposition,
Chapter I §1, p.7-8] that A° € DISg. Now let @ € A° and m € M. Then there
exists U < G open, such that a € AV. Since, by definition, the actions of M and G

commute, we obtain for all u € U
u-(m-a)=(u-m)-a=m-u)-a=m-(u-a)=m-a,

i.e. m-a € AV and therefore M also acts in A°. Since both, M and A° carry the
discrete topology, this action trivially is continuous and since the actions of G and

M commute on A, their restrictions on A° do so as well. This means that we have
Ad e DI8c M as claimed. O
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Corollary 2.2.8.
Let G be a profinite group, M a discrete monoid and A € ABSg . Then

AY = (A%)C.

Proof.
Clear, since A% C A and A% C A9. O

Lemma 2.2.9.

Let G be a profinite group, A € DISq and B € ABSq. Let furthermore f: A — B
be a group homomorphism which respects the actions of G. Then im(f) C B°, i.e.
f: A— B°is a morphism in DIS¢.

Proof.

Let y € im(f) and 2 € A such that f(z) = y. Since A € DIS¢g it is A = A® (cf.
[INSW15, (1.1.8) Proposition, Chapter I §1, p.7-8|) and therefore it exists U < G
open such that z € AY. For all u € U we then deduce

u-y=u-f(r)=flu-z)=f(z) =1y,
ie. ye BY C B O

Corollary 2.2.10.

Let G be a profinite group, M a discrete monoid, A € DISgm and B € ABSqm. If
f: A= B is a group homomorphism which respects the actions from G and M then
im(f) € B® and f: A — B® is a morphism in DISc 1.

Proof.

The first part is an immediate consequence of Lemma 2.2.9, the second is direct
from the assumption: If f: A — B respects the operations from G and M then
f: A — im(f) does so as well and with im(f) C B as well as B® € DISgm (cf.
Lemma 2.2.7) the claim follows. O

Lemma 2.2.11.
Let G be a profinite group, M a discrete monoid and I € ABSq m an injective object.
Then I’ € DI8c M also is an injective object.

Proof.
Let A,B € DISgm, f: A — B injective and u: A — I% and consider the following
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diagram

Since A and B are also objects in ABS8q v and I is injective, there exists a morphism

v: B — I in AB8qgm such that the following diagram commutes

f

0——=A——-2RB

oy
J

From Corollary 2.2.10 we deduce that im(v) C I% and that v: B — I° is a morphism
in DISg m. This morphism still fulfils v = vo f, which then means that I’ e DI8c M

is an injective object. O

Proposition 2.2.12.
Let G be a profinite group and M a discrete monoid. Then the category DISq v has

enough injective objects.

Proof.

Let A € DISg M. Since also A € ABSg M and ABSg v has enough injective objects
(cf. Corollary 2.2.6) we can find an injective object I € ABSg v together with an
inclusion A — I in AB8g M. From Corollary 2.2.10 we then deduce an inclusion
A—TI%in DI8c v and from Lemma 2.2.11 that I% is an injective object in DI8c M,
which ends the proof. O

Lemma 2.2.13.
Let G be a profinite group and M o discrete monoid. Then the functor

(—)M. DISG A\ — Ab

is left exact and additive (Ab denotes the category of abelian groups).

Proof.
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Since DISG M and DISaxm coincide (cf. Remark 2.2.4) we can view the functor
(—)&M as (=)&*M_ Then Proposition 2.2.2 says

(—) M = Homggx a (Z, —)

which immediately gives the claim, since Hom(Z, —) is left exact and additive. [

Proposition 2.2.12 and Lemma 2.2.13 together say that the right derivations for
(—)%M  where G is a profinite group and M a discrete monoid, exist (cf. [Stal8, Tag
0156, Lemma 10.3.2 (2)]). This then leads us to the following definition.

Definition 2.2.14.

Let G be a profinite group and M a discrete monoid. Then
H"(G,M;—) := R*(—)%M denotes the n-th right derived functor of (=)™ and is
called the n-th cohomology group.

Remark 2.2.15.
Recall that the right derived functors are computed by choosing an injective resolution,
i.e. if G is a profinite group, M a discrete monoid and A € DISg\ and I"™ € DISG m

are injective objects for n € Ng such that the complex

0 A 1° It

is exact, then it is H"(G, M; A) = H"((I*)%M). Note, that if A itself is an injective
object, than it is H"(G,M;A) =0 for n > 0 since then

0 A A 0

1 an injective resolution.

Lemma 2.2.16.
Let G be a profinite group, N <G a closed, normal subgroup and M « discrete monoid.
Then the functors

DI8g M — DI8q /N
(—)N : @JSG’M E—— @jgg/NJ\/[
send injectives to injectives.

Proof.
Let I € DISgm an injective object, A,B € DISgN, f: A — B injective,


https://stacks.math.columbia.edu/tag/05TI
https://stacks.math.columbia.edu/tag/05TI
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u: A — IV and consider the following diagram

! . B

A
IN’M
I

We then let M trivially act on A and B and define g -z := [g] - = for ¢ € G and
x € A respectively € B. Here [g] denotes the class of g in G/N. This then defines
a continuous G action on both, A and B. Since this action obviously commutes with
the trivial action from M we have A, B € DISqg \. Since [ is an injective object, we

then get a morphism v: B — I in DISq  such that the following diagram commutes

f

B

v

A
IN’M
I

Let be Band z € N or z € M. Then we have

z- f(b) = f(z-b) = f(b),

i.e. im(f) € IVM and v: B — I™M is a morphism in DISq /N which then proves
that I™M is an injective object in DI8q/N-

In exact the same way, one proves that IV € DI8q/n,m 1s an injective object: For
A,B € DISg/nm one defines a G-action as above and one carries the M-action

instead of letting M act trivially. The rest of the proof is literally equal. O

Proposition 2.2.17.
Let G be a profinite group, N <G a closed, normal subgroup and M « discrete monoid.

Then for every A € DISq \ there are two cohomological spectral sequences converging

to H(G, M; A):

HYG/N,H"(N,M; A)) == H""(G, M; A)
H*G/N,M; H*(N, A)) == H***(G, M; A).

~—
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Proof.

Proposition 2.2.12 says that the categories DISG m, DISq/n M and DISq N have
enough injectives. Lemma 2.2.16 says that the functors (=)™ : DISq \m — DISq /N
respectively

(—)N: DI8gm — DISq/nm send injectives to injectives. Furthermore, since the

actions of G'and M on objects of DISG\ commute, the compositions

_\N,M G/N

DISG.Mm DISG /N —— Ab

and
N (_)G/N,]\/[

DISG/N M

DISG M Ab

both coincide with (—)%*. This then leads to the claimed Grothendieck spectral

sequences. O

As we now have accomplished the abstract theory for our goals, we want to discuss
how to compute these cohomology groups when the monoid action arises from an

endomorphism. First of all, we want to compare Nyp-actions with Z[X]-modules.

Remark 2.2.18.
The category ABSy, coincides with the category of Z[X]-modules.

Proof.

To avoid confusion, we denote the action of Ny on an abstract abelian group for this
proof by "+" and the canonical action of Z by "-".

Let A € ABSy,. By X - a :=1%a we make A into a Z[X]-module. Conversely, if A
is a Z[X]-module, then by n xa := X" -a we get A € AB8y,. With these definitions

it is immediately clear, that also the morphisms coincide. O

We made this remark, because we think it’s better to think of a Z[X]-module than
of an object of AB8y, - just for avoiding confusion. In the following, we will switch

between these two concepts without mentioning it.

Remark 2.2.19.
Let G be a profinite group, A € DI8q ,. For everyn € Ng we can define an No-action

on Cfi

(G, A) by operating on the coefficients:

(X - f)(o) =X - (f(0)).
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Remark 2.2.20.
Let A** b a (commutative) double complex of abelian groups. We write Tot(A**®) for

its total complex, by which we mean the complex with objects

Tot"(A*) == P A"

i+j=n

and differentials

n .- 7‘7
Tot(A®®) — @ dhOI‘ Ti 1,5 (_1) dvert OPr;i—1-
i+j=n

If f**: A®* — B** is a morphism of (commutative) double complexes, then

Tot™(f**): Tot"(A**) Tot™(B**)

(@ij)ivj=n —————(fij(aij))i+j=n

defines a morphism of the corresponding total complezes.
If X® and Y* are complexes of abelian groups and g*: X® — Y® is a morphism of
complexes, then it also is a double complex concentrated in degrees 0 and 1 and we

again write Tot(g®: X® — Y'®) for its total complex.

Remark 2.2.21.
Let G be a profinite group and A € DISq. As in [NSWI15, p.12-13| we omit the

subscript "cts" for the notations introduced in Remark 2.1.8, i.e. we write
X™G, A) = Map(G", A),
" for the differential X" Y(G,A) — X"(G, A) and
C™(@G, A) = X"(G, A)°.

Definition 2.2.22.
Let G be a profinite group and A € DISq n,. Then define

X-1

C% (G, A) = Tot(C*(G, A) C*(G,A4)),

F (G, A) = H* (€% (G, A)).

If the Nyp-action on A comes from an endomorphism f € Endg(A) (cf. Proposition
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2.2.1), then we also write

€*(G,f)—id

€%(G, A) = Tot(C*(G, A)

H5(G, A) = H*(€3(G, A)).

C*(G, A)),

If A e ABSy, then we also write 3% (A) for the cohomology of the complex A XA

concentrated in the degrees 0 and 1.

The aim now is to see that the cohomology of the complex €% (G, A) coincides
with the right derived functors of (—)%MNo. Before proving this, we want to make a
smaller step and explain first how to compute the right derived functors of (—)NO and
that these coincide with the cohomology of the complex A XL A concentrated in

degrees 0 and 1.

Proposition 2.2.23.
Let A € ABSy,. Then we have

HO(Ng; A) = Ao,
Hl(No;A) :ANO,
H'(No; A) = 0 for alli € Z\ {0,1}.

In particular, the right derived functors of (—)No coincide with the cohomology of the
compler A X2 A concentrated in degrees 0 and 1. Using the notation from abowve,

this means that for all i € Z there are natural isomorphisms
H'(Ng; A) = H (A).

Proof.

In Proposition 2.2.2 we identified the functors (—)N and Homgy,x|(Z, —). To compute
the right derived functors of Homyyx)(Z,—) for A, we also can compute the right
derived functors of Homgx)(—, A) for Z. To do this, we need a projective resolution
of Z as Z[X]-module, where X acts as 1. Trivially Z[X] is a projective Z[X]-module

and therefore we get a projective resolution of Z by:

0 — Z[X] Z[X)] Z 0
P(X)—= (X —1)P(X)
P(X)—— P(1).

This sequence is exact:
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The first map is injective since Z[X] is an integral domain and therefore (X — 1) P(X)
is zero if and only if P(X) is zero. The second map is surjective, since for z € Z the
constant polynomial P,(X) := z maps to z. The image of the first map is a subset
of the kernel of the second map, since X — 1 maps to zero under the second map.
If P(X) is in the kernel of the second map, then 1 is a root of P and there exists
Q(X) € Z[X] such that (X —1)Q(X) = P(X), i.e. the kernel of the second map
is also a subset of the first map. So, for computing the right derived functors of

Homgy,x1(Z, —) for A, we have to compute the cohomology of the complex

Homyx|(Z[X], A) Homy x| (Z[X], A)
f———""—I[FP~ f(X -1)P(X))]

concentrated in the degrees 0 and 1. But since Homyx|(Z[X], A) = A as Z[X]-module

this complex translates into

A
a— (X —1)-a.

This is exactly the second part of the claim. It remains to compute the cohomology

groups. From the observations above we get

H"™(No; A) = (R"Homypy)(—, A)(Z) = H"(A = A).

We then can immediately deduce that H™(Ny; A) =0 for n € Z\ {0,1} and we get

HO(Ny; A) = ker(A =3 A)
={acA|X -a=a}
={a€A|n*a=aforall n e Ny}
= ANo

H'(Np; A) = coker(A g A)
=A/{a€ A| it exists b € A such that (X —1)-b=a}
= Any,

what are exactly the claimed groups. Here, to avoid confusion, "x" denotes the

operation from Ny on A. O
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Proposition 2.2.24.
Let G be a profinite group and A € DISqn,. Then the double complex

K** = C*(G,4) ——

C*(G,A)
gives rise to two spectral sequences converging to the cohomology H% (G, A):

HY (HY (G, A)) == HL(G, A)
HYG, 34 (A) == HE(G, A).

Proof.
Since for every n € Z the double complex K** has at most two nonzero entries KP4
with p + ¢ = n, this is shown in [Stal8, Tag 012X, Lemma 12.22.6]. O

Lemma 2.2.25.
Let G be a profinite group and f: A — B be a morphism in DISqn,. Then the

diagram
Cc% (G,
(@, A) — XN onia. By
\La,q 6B
+1 %G +1
€% (G, A4) Cx" (G, B)

is commutative for all n € Ny.

Proof.
Let (z,y) € C%(G, A). Then compute

O NG, f)(0a(z,y)) = CYHG, )0k (), (~1)™(X — 1) -z + 5 (y))
= (fo (94(2)), fo (=1)"(X = 1) -z + 957 (),
p(Cx (G, [)(x,y)) = Op(f o, foy)
= (0p(f o), (-1)"(X =1) - (fox) + 0 (foy)).

Since the diagram

(@, 4) —EN L oma, By
(9,4 88
n+1
C"+1(G,A) - (G.f) C"+1(G, B)

is commutative for all n € Ny (cf. [NSW15, Chapter I §3, p. 25]) we have 0o f = fod’}


https://stacks.math.columbia.edu/tag/012X
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for all n € Ny and since, by assumption, f respects the action of Ny we have
fo(X —1)= (X —1)o f. Using this in the above computation, we see that the

diagram in fact commutes. O

Lemma 2.2.26.
Let G be a profinite group and

be an exact sequence in DISq n,. Then, for every n € Ny, the diagram

€% (Gya) €% (G,8)

0 ——C% (G, A)

B

0—=C¥ (G, A)

€% (G, B)

(G, C) —=0
; -

ertl(G,a entl(a,
X ( ) e}+1(G,B) X ( 5) G}Jrl(G,C’)HO

is commutative with exact rows, i.e. the sequence

€% (G.a) €% (G.58)

00— €%(G, A) e (G, B) % (G,C) —=0

15 exract.

Proof.
The commutativity is Lemma 2.2.25. Since A, B and C' are discrete groups, we deduce

from Corollary 2.1.12 that for all n € Ny the sequence

e"(Ga) €™ (G,B)

0—C"(G,A)

e"(G, B) e"(G,C) —=0

is exact. But since C% (G, Z) = €"(G, Z) ® C""Y(G, Z) (where C~}(G, Z) = 0) and
€% (G,n) = C"(G,n) ® C"TY(G,n) for all Z € DISgn, and any morphism 7 in
DI8G Ny, we immediately deduce that the sequence

€% (G,a) €% (G.58)

0 — €%(G, A) e (G, B) e (G,C) —=0

is also exact. O

Corollary 2.2.27.
Let G be a profinite group and
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be an exact sequence in DISq n,. Then, for every n € Ny, the diagram

en(G,a)  Cx(Ga) engB)  Cx(GH) en(Go)
im(8% 1) im(9% 1) im(8%~ ")

e (Gla)

0 —=ker(9§M) ——"">ker(9p™) ker(@@“)

evtiaG,p)

is commutative with exact rows. Here 8%: C% (G, Z) — C%H(G, Z) denotes the n-th
differential for Z € DISq N, -

Proof.
The commutativity follows directly from Lemma 2.2.26. The upper row is the cokernel

sequence of the following commutative diagram with exact rows

enfl G,Ot enfl G,
0 e l(G, A) > e, By X e o) 0
\Laz_l l{)g—l iag—l
C% (G,a e (G,
0——=C%(G, 4) e €% (G, B) HED en (@, C) —0

and therefore it is exact. Similarly the lower row is the kernel sequence of the following

commutative diagram with exact rows

C% (G« e (G,
0——e(G, A) — 2 _en (g, B)— 2 en(q,0)——0
\LaA J{aB \Lac
entl G,a en+1 G,
0 N (‘37)?_1(6?, A) X ( ) 87;(+1(G, B) X ( B) GT;(J'_I(G, C) . 07
i.e. it is also exact. O

Lemma 2.2.28.
Let G be a profinite group. The functors (H%(G,—))n then form a cohomological

d-functor, i.e. if

0 A—2.p_".¢ 0

is an exact sequence in DISq , then, for everyn € Ny, there is a group homomorphism

5 HE (G, C) HE (G, A)
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such that the sequence
- —— I (G, B) — I3 (G, C) == I (G, A) — 3G, B) — -

18 exact.

Proof.

The proof is the standard application for the snake lemma (cf. for example at [NSW15,
(1.3.2) Theorem, Chapter I §3, p.27]). We will give the proof here, to check that
it really holds in this situation. For the snake lemma see [NSW15, (1.3.1) Snake
Lemma, Chapter I §3, p. 25-26].

Let n € Ng. For Z € DISq , let 0%: C% (G, Z) — €% (G, Z) be the n-th differential.

Corollary 2.2.27 says that the following commutative diagram has exact rows:

en (G,A) €% (Ga) e (G,B) €% (G.B) e%(G,C)

0
im(9% 1) im(9p~ 1) im(07")
e, e,
00— ker(a+) Y perantty G p(amt

Since the vertical kernels of the above diagram are the groups H% (G, ?) and the
vertikal cokernels are the groups i}C}Jrl(G, ?7) the snake lemma then says that there is

an exact sequencel

Hx (G, A)

H% (G, B)

ST

H% (G, C))

4;(“((;, A) ——=HP (G, B) —= HE(G, 0).
Doing this for all n € Ny and connecting the sequences, this is exactly the claim. O

Lemma 2.2.29 (Adjunction of ® and Hom).
Let R — S be a homomorphism of commutative rings, X a R-module and Y, Z be
S-modules. Then there holds

Homp(Y ®s Z, X) = Homg (Y, Hompg(Z, X)),

where Homp(Z, X) is a R-module via (r - f)(z) == r(f(2)) for allr € R, and z € Z.

Proof. [Stal8, Tag 05G3, Lemma 10.13.5] O

!The snake arrow is from https://www.latex4technics.com/?note=93q


https://stacks.math.columbia.edu/tag/05G3
https://www.latex4technics.com/?note=93q
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Lemma 2.2.30.
Let G be a group. Then there holds

Z[G)[X] = Z|G] 2 Z|X].

Proof.
First we want to note that the elements of Z|G] ®z Z[X| can be written in the form

>oi(ni ® X7).
We will show the claim by showing that the homomorphism

Z|G][X] Z|G) ® Z|X]
S (Sgeas 9) Xi——— 5, ((Shea s - 9) @ X)

is an isomorphism. But with the remark of the beginning, that every element of
Z|G] ®z Z[X] can be written in the form Y, 7; ® X*, it is immediately clear that

Z[G) ®7 ZIX] Z[G)[X]
2ico (m ® X1) ——— 3Ly X’

is the inverse map. O

Lemma 2.2.31.
Let G be an abelian profinite group. Then, for everyn € N the functor H'y (G, —) is ef-

faceable, i.e. for every A € DISq n, there exists a B € DISq N, and a monomorphism
u: A — B in DISq N, such that H (G, u) = 0.

Proof.

For this proof let I be an arbitrary product of Q/Z. Then I is an injective Z-module.
Note that every Z-module can be embedded in such a module. Then also every object
from ABSq N, can be embedded in a module of the form Homgz(Z[G][X],I). With
Corollary 2.2.10 we than can conclude that every object of DISq ry, can be embedded
in a module of the form Homgz(Z[G][X], I)°. Therefore it is enough if we show

H% (G, Homg(Z[G][X],1)°) = 0 for all n > 0.

Set T := Homgz(Z[G][X],I). First we want to see that 79 is an injective object in
DI8G. Recall from Lemma 2.2.11 that it is in fact an injective object in DISq -
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We have

T — Homy(Z|G][X], T)
= Homg(Z[G] ®z Z[X],I)
— Homy(Z|G], Homy(Z[X], T)).

Here the second equation comes from Lemma 2.2.30 and the third from Lemma 2.2.29.
Since Z[X] = Py, Z we get Homz(Z[X],I) = [[, { which then is again a product
of Q/Z (since I is so). Since then Homgz(Z[X],I) is an injective Z-module, T is an
injective object in ABS8¢ and with Lemma 2.2.11 we then see that T also is an
injective object in DISq. In particular it is H?(G,T°) = 0 for all b > 0.

Next, we want to see that (7°)¢ is an injective object in ABSy,. Recall from Corollary
2.2.8 that (T°)% = T¢. We then compute

(T°)¢ = TY = Homgy(Z[G][X], )
= Homy ) (Z[G][X], I)
= Homy ) (Z[G] @7 Z[X], )
= Homgz(Z[X], Homgz ) (Z[G], I))
= Homyz(Z[X], I).

As above, the third equation comes from Lemma 2.2.30 and the fourth from Lemma
2.2.29. But this shows that (77)% is an injective object in ABSy, and since H% (—)
coincides with H*(Ng; —) (cf. Proposition 2.2.23), which itself is the a-th right derived
functor of (—)No, we then get 3% ((7°)%) = 0 for a > 0 (cf. Remark 2.2.15).

Combining these two results, we obtain
HG (HY (G, T%) =01ifa> 0orb>0.
Since Proposition 2.2.24 says that
Hy (HY (G, T?)) = HG (G, T°)

we conclude that H'% (G, T?%) = 0 if n > 0, as desired. O]

Corollary 2.2.32.
Let G be a profinite group. Then the family of functors (H'%(—))n from DISq N, to

Ab forms a universal delta functor.

Proof.
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Lemma 2.2.28 says that (H'(—)), forms a delta functor and Lemma 2.2.31 says that
the functors H', (—) are effaceable for n > 0. This together shows that (H% (—)), is

a universal delta functor. ]

Theorem 2.2.33.
Let G be a profinite group. Then we have

%}(Gv A) = H"(G,Np; A)

for alln € Ng and A € DI8q -

Proof.

Since (H™(G,Ng; —)),, are the right derived functors of (—)%MNo this is a universal
delta functor and since (H'% (G, —)), is also an universal delta functor (cf. Corollary
2.2.32), it remains to check that they coincide in degree 0. For this, let A € DISq -
We have

H°(G,Ng; A) = AGNo

and
HX (G, A) = H(C% (G, A))
d° 1 X-1
=ker(A — C(G,A)) Nker(A — A)
= AN AX=!
Since, by definition, AX=! = ANo it follows immediately that A®No = AG N AN [

Next we want reformulate Proposition 2.2.17 with the above theorem, just to avoid

confusions for latter applications.

Proposition 2.2.34.
Let G be a profinite group, N <G a closed, normal subgroup. Then there are two

cohomological spectral sequences converging to H'% (G, —):

HY(G/N, 34 (N, A)) == HE(G, M; A)
H% (G/N, H*(N, A)) == HL(G, M; A).

~—

Proof.
This is Proposition 2.2.17 using H"(G,Ng; —) = H% (G, —) from Theorem 2.2.33. [
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As for the standard continuous cohomology (cf. [NSW15, (2.7.2) Lemma, Chapter
IT §7, p.137]), we will also need a long exact sequence for H% (G, —) in a slightly

different setting as in Lemma 2.2.28.

Proposition 2.2.35.
Let G be a profinite group and let

be a short exact sequence in TOPq N, such that the topology of A is induced by that of
B and such that B has a continuous, set theoretical section. Then there are continuous

homomorphisms

& HE (G, ) HEHG, A)

such that the sequence
= MR (G B) = HE (G, O) == HR (G A) ——= H (G B) —— -

15 exact.

Proof.

Algebraically this is exactly the same proof as Lemma 2.2.28. It then remains to
check, that the occurring homomorphisms are continuous which is only for the 6"
a real question. But this can be answered using a topological version of the snake
lemma, like [Sch99, Proposition 4, p. 133]. O

2.3 SOME HOMOLOGICAL ALGEBRA

In this section we want to collect and prove some facts we will need later on.

Definition 2.3.1.
Let C* be a complex of abelian groups and n € Z. Then we denote by C*[n] the shift
of this complex by n. This means, that for all i € Z we have C?[n] = C**".

Lemma 2.3.2.
Let Y* and Z* be complexes of abelian groups and let g*: Y*® — Z* be a morphism
of complexes, such that every g' is surjective. Then there is a canonical, surjective

homomorphism
ker(d}) Nker g* — H'(Tot(g*: Y* — Z*)).
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In particular, if all the g* are bijective, we have
H'(Tot(¢%: Y* — Z°)) = 0.

Proof.
For the clarity of the presentation we write H' := H'(Tot(g®: Y* — Z*)). The i-th
object of the total complex is Y* x Z~1 and the i-th differential d"Tot is

diey = di o pry x (=1)"g" o pry +d% ! o prs.
We then compute
ker iy, = {(y,2) € Y x 271 [ dy(y) = 0, (=1)'¢'(y) + d ' (2) = 0}
and

imd! ={(y,2) €Y' x 271 3¢/, ) e V"t x 2072
y=dy (), 2 = ()" (Y) + ()}

and we set A’ == kerd¥,, and B’ := im diT:)%, i.e. we have H® = A"/B’. There is a
canonical homomorphism ker(d} ) Nker g — A’ sending y to (y,0). Connecting with
the canonical projection then gives a homomorphism ker(d%/) Nker g’ — H'.

So, let (y,z) € A% Since g' ! is surjective there is an 3’ € Y*~! such that
(-1)lg"=Y(y) = —2, i.e. we have (d}'(y'),—2z) = d’;{(y,0) € B' and there-
fore that the classes of (y,z) and (y + d% '(y/),0) in H? coincide. So it remains to
check y + di ! (y') € ker(d}) N g*. We already have y,d% ' (y/) € ker(d}) and

9'(y) = (-1)"1d5 N (2) = (=1)'dS H(=1)'g" (W) = —g'dy (),

ie. y+dil(y) € kerg’. So, the class of (y + di-'(y/),0) in H' is the image of
y+ d%fl(y’) under the above map.

If now all the ¢° are bijective, we have ker(g?) = 0 for every i € Z. Therefore it clearly
is

H'(Tot(¢*: Y* = Z*)) =0

for every i € Z. O
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Lemma 2.3.3.
Let

0 xo oy T e 0

be a short exact sequence of complexes of abelian groups. Then the sequence
0——=X*——Tot(Y* — Z°) ——=Tot(Y*/f*(X®*) —» Z*) ——=0
s also an exact sequence of complexes and for the cohomology we have
HY(X®) = H(Tot(¢g*: Y* — Z°)).

Proof.
First note, that f?(X?) is a subgroup of the kernel of

pro dY . Yi Yi—i—l Yi+l/fi+l (Xi-i-l)

and therefore we get a well defined homomorphism dy : Y/ f1(X?) — Yitl/fitl(xi+l),
We then have to check that for every i € Z the diagram

. i0 . . rXi . . . .

0 Xt (f%,0) Vi x zi-1 prxidz Yz/fz(Xz) w 7i-1 0
dx ldy xgi+dz dy xgi+dyz

0 it U0 i i prxidz yitl/ pitl(xi+l) i gi 0

is commutative with exact rows, where gi: Y?/f(X*) — Z' is the from ¢* and the
given exact sequence induced homomorphism. We start with the exactness:

By assumption, for every i € Z the homomorphism f: X’ — Y is injective and
therefore the sequence

fi

0 Xi yi— 2 L yi/fi(X) ——>0

is exact for every i € Z. But then also the sequence

0 xi Oy gimt P2 iy o ziel g

is exact for every i € Z. To the commutativity:

By assumption we have fit! ody = dy o f* for all i € Z, which means that the
first square of the above diagram commutes. For the second square, let y € Y and
z € Z=1. By definition, we have pr(dy (y)) = dy (pr(y)) and g'(pr(y)) = ¢*(y) and
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therefore

(pr(dy (1)), 9'(y) + dz(2)) = (dy (pr(y)), 7' (pr(y)) + dz(2)),

i.e. the second square commutes.

So the short sequence
0——=X*——Tot(Y* — Z°) ——=Tot(Y*/f*(X®*) —» Z°) ——=0

is exact and we obtain from the long exact cohomology sequence that for every i € Z

the sequence
Hi=Y(Tot(¢*: Y*/f*(X®) = Z°*)) —= H'(X®*) — H'(Tot(g*: Y* — Z°*))
e HI(Tot(7%: Y*/f*(X*) = 2°))

is exact. Lemma 2.3.2 says that the first and the last term in above sequence are 0

and therefore we get the claimed isomorphism. O

Corollary 2.3.4.
Let G be a profinite group, A, B € DISq and f a continuous endomorphism of B
which respects the action of G such that the sequence

f—1

0 A B B 0

1s exact. Then we have

H'(G,A) =3}(G,B)

for alli > 0.

Proof.

This is just the above Lemma 2.3.3 with Corollary 2.1.12 and the notation from
Definition 2.2.22. O

Corollary 2.3.5.
Let G be a profinite group and let

0 A—2>B C 0

be an exact sequence in TOPq, such that the topology of A is induced by that of B

and sucht that 8 has a continuous, set theoretical section. Then the exact sequence of
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complexes

C* (G, Ce(G,
0— 2%, (G, 4) —=9Y e (@, 3) D e (G 0) ——0

(cf. Corollary 2.1.12) induces

AG = H((:)ts(Gv A) = HO(TOt(C:ts(Gv /8) C(:ts(Gv B) - C(:ts(G7 C)))
and
CG — Hclts(Gv A) = Hl (TOt<C(:ts(Ga 6) : C(:ts(G7 B) — C(:ts(Gv C)))
Proof.
This is an immediate consequence of the combination of the above Lemma 2.3.3 with
Corollary 2.1.12. O

Now let’s turn to some facts about projective limits.

Remark 2.3.6.
Note that C?

(G, —) commutes with projective limits, since the functors Mapes(G™, —)

and (=) commute with projective limits, i.e. if A= @n Ay, then
Cc.ts(G) A) = m Cc.ts(Ga An)

Lemma 2.3.7.

Let G be a profinite group, A € TOPqg and let (A,), be an inverse system in TOPq
such that A = @n A, in TOPq. Let furthermore f € Endes q(A), such that
f= l&lfn with f, € Endesc(An). Then there holds

€3(G. A) = 1im €} (G, A,).

Proof.

First we want to note, that for groups X = @Xn and Y = l'&ﬂfn always holds
XxY = @n(Xn x Yy).

This means that the objects of the two complexes C}(G, A) and lim €%(G, Ap) coincide,
so it remains to check that the differentials do as well. If we denote the i-th object of
C2.(G,A) by C* and the differential by d’ then it suffices to check that the following

cts
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cube is commutative

e (G.f)

C! C!

i \Ci fm €4(C.f) a\ o

Crit1 " €'(G.f) Citl i
\CL & ei(G’f”)\CM.

This is a direct consequence from the assumption f = 1&11 fn and that Co. (G, —)

commutes with inverse limits. O

Lemma 2.3.8.

Let G be a profinite group and (Ayn)n be an inverse system in TOPq such that the
inverse system of complexes (Cas(G, An))n has surjective transition maps and let
A= l&nn Ap. If f € Endets g(A) then also the system (@}(G,An))n has surjective

transition maps.

Proof.
By assumption, for every k € Ny, the transition map C% (G, A,) — CE (G, A,_1) is
surjective. But then also the transition map

Clc

cts

(G, A,) @& CE Y G Ay —=CF (G, Ap_1) @ CF NG, Apy)

cts cts

eE(G, Ay) Ch(G, Ap-1)

is surjective, since it’s the direct sum of two surjective maps. O

Definition 2.3.9.

An inverse system (of abelian groups) (X, )nen is called Mittag-Leffler (ML) if for
any n € N, there is an m > n such that the image of the transition maps X — X,
coincide for all k& > m (cf. [NSW15, p. 138]).

An inverse system (of abelian groups) (X,)nen is called Mittag-Leffler zero (ML-
zero) if for any n € N there is an m > n such that the transition map Xj — X, is
zero for all k > m (cf. [NSW15, p.139]).

A morphism (X,), — (Y,,), of inverse systems is called Mittag-Leffler isomor-

phism (ML-isomorphism) if the corresponding systems of kernels and cokernels
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are ML-zero.

By @T we denote the r-th right derived functor of l&l

Proposition 2.3.10.
Let (X,,) und (Yy) be inverse systems of abelian groups.

1. If (X,) has surjective transition maps, then it is M L.
2. If (X,,) is ML then @; X, =0 forallr > 0.

3. If fn: X5, = Y, is a ML-isomorphism then for all i > 0 the homomorphism
fi, fo: Jm, X —— o Yo
18 an isomorphism.

Proof.

1. Let apm: Xy — X, denote the transition map for m > n. Then it is im(ap,) =
X, for all m > n, i.e. the system X,, is ML.

2. [INSW15, Chapter II §7, (2.7.4) Proposition, p. 140]

3. First note that the systems (ker(f,)) and (coker(f,)) are ML since they are
ML-zero and therefore it holds @; ker(f,) =0 and I&n; coker(f,) = 0 for all

1 > 0. Now consider the following two short exact sequences

0 ——ker(fn) Xn im(f,) —0,

0 —im(f,,) ——Y,, — coker(f,,) —0.

Taking inverse limits together with the assumption that both systems (ker(f,))

and (coker(f,)) are ML-zero then gives the long exact sequences
>0 %@; X, %@; im(f,) —0 %@?1 X, ﬁ\hénj:rl im(f,) >

i i cit citl
>0~>1£1n1m(fn)~>££1nYn~>O~>@n 1m(fn)~>££1n Yy, e

Since im(f,) — Y, is the canonical inclusion, the second sequence implies
gn; im(f,) = hén; Y, for all ¢ > 0. Together with the first sequence, this then
says that

fi, fo: o', X —>Jim im(f) = i Y,
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is an isomorphism for all 7 > 0.

Proposition 2.3.11.
Let (X2) and (Y,?) be inverse systems of complexes of abelian groups such that the

transition maps X\ | — X} and Y, | = Y}! are surjective for all i € Z and n > 0.

1. For all i € Z we get a short exact sequence
0 —lim! H"'(X?) — Hi(lim X2) —lim H'(X})—>0.

2. Let (fr): (X2) — (Y.?) be a morphism of inverse systems of complexes. If the
induced map on cohomology H'(f2): H'(X?2) — H(Y,?) is a ML-isomorphism
for allv € Z, then @n(f;) 1£1n Xy — l&nn Y, is a quasi isomorphism.

Proof.
1. [Soc80, Chapter 3, Proposition 1, p.531; Corollaryl.1, p.535-536]

2. From the first part of the proposition we obtain for every i € Z a commutative

diagram with exact rows
0 ——lim! H'"1(X?) — H'(lim X2) —lim HY(X})—>0

ir&n; () lH(lgl £2) ign ()
0 ——lim' H'(Y;?) — H'(lim V;*) ——lim H'(Y,;}) —0.

The assumption that H'(f2) is a ML-isomorphism for all i € Z then says that
the left and the right horizontal maps in the above diagram are isomorphisms
(cf. Proposition 2.3.10). The 5-Lemma then implies that also H 1(1&11” fr) is an

isomorphism for all 7 € Z, i.e. @n fn is a quasi isomorphism.

Remark 2.3.12.

Since isomorphisms of inverse systems are always ML-isomorphisms, the above Propo-
sition also states, that if (fa): (X)) — (Y,?) is a quasi isomorphism of inverse systems
of complexes, for which the transition maps XfLH — X! and Y7f+1 — Y are sur-
jective for all i € Z and n > 0, then also @n(fg) m X3 — lim Y is a quasi

isomorphism.
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Remark 2.3.13.

In the above Proposition 2.3.11 and Remark 2.3.12 one cannot easily drop the
assumption that the transition maps are surjective. In the following we will give an
example of two inverse systems of complexes which are quasi isomorphic, but their
projective limits are not. In our opinion, because of this example, in the proof of
[Sch06, Theorem 2.2.1, p. 702-705| right before [Sch06, Proposition 2.2.7, p. 703-705|,
their should be an explanation why it really is enough to prove this proposition.
The first inverse system of complexes we consider is the complex wich is everywhere
0. This complex and its projective limit complex clearly have cohomology equal to 0.

The nontrivial inverse system of complexes is the system consisting of

0 Pz z Z)pn7 —0— -

for every n. The transition maps of the inverse system (p"Z),, (Z), and (Z/p"Z),
are the inclusion for the first two and the canonical projection for the last one. Then
one immediately obtains that the inverse system (p"Z),, has not surjective transition

maps. Since this complex is exact, we have for every n € N a quasi isomorphism

0 g/ z L)L — ) —> - -
0 0 0 0 0

Taking projective limits of these inverse systems of complexes then gives
0 0 Z Ly, 0
0 0 0 0 0

But Z # Z, and therefore the upper complex has a nontrivial cohomology groups

equal to Z,/Z while the lower complex still has cohomology equal to zero.

We will end this section with a proposition with strongly reminds on the universal
coefficient theorem in the sense of [Che09, Theorem 3.21, p. 13| , but for which there
is no proper reference. Instead of explaining how consisting statements transfer to

our, we decided us to give a straightforward proof of the proposition.

Proposition 2.3.14.

Let R be a commutative ring with unit, C* be a cochain complex of R-modules and V
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a flat R-module. Then there holds
H*(C*)@rV = H*"(C*®RrV).

Proof.
This is [Nek07, (3.4.4) Proposition, p.66-67]






CHAPTER 3

LUBIN-TATE (¢, I')-MODULES

The goal in this chapter is to generalize the equivalence of categories from [Sch17] in
a way similar to the original result [FO10, Theorem 4.22, p. 82| for (¢,T')-modules in
the cyclotomic case. Namely, if K|L|Q, are finite extensions, we want to establish an
equivalence of categories between the category of continuous Op-representations of the
absolute Galois group G and a yet to be defined category of étale (¢, ' )-modules.
In order to do this, we will go through the book [Sch17|, starting around section 1.7
and explain how one transfers the results to the relative case of a finite extension of
L. Unfortunately we have to permute the order of [Sch17|, since the construction of
the coefficient ring involves some facts, which in loc. cit. are important only later on.

One more useful source will be [Sch1l].

3.1 PREPARATIONS AND NOTATIONS

Let p be a prime number and let @p be a fixed algebraic closure of the p-adic numbers
Qp and let as usual Z, be the integral p-adic numbers. Each finite extension of Q,, is
considered to be a subfield of @. Let C, be the completion of @ with respect to
the valuation v, with v,(p) =1 and let Oc, be the ring of integers of C,.

Let furthermore L|Q, be a finite extension, dj, its degree over Q,, O, the ring of
integers, mp, € O a prime element, ky, the residue class field, q;, = p” its cardinality,
L' the maximal unramified extension of @, in L with ring of integers O pur.

Let furthermore K|L be a finite extension, dg its degree over Q,, Ok its ring of
integers, mxg € Ok a prime element, ki the residue class field, ¢k its cardinality, K"
the maximal unramified extension of Q, in K with ring of integers O fur.

We will denote the absolute Galois groups of Q,, L and K by Gg,, G and Gk

respectively.
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By W (-)r we will denote ramified Witt vectors (cf. [Sch17, Section 1.1, p.6-21]).
Roughly speaking, these are standard Witt vectors tensored with O, (cf. [Schl7,
Proposition 1.1.26, p. 23-24]).

A perfectoid field X C C, is a complete field, such that its value group |X*| is
dense in R} and which satisfies (Ox/pOx)P = Ox/pOx (cf. [Schl7, p.42]).

Let K be a perfectoid field. The tilt K of K is the fraction field of the ring

Ogo = lim O /w0y,
Tzl
where w is an element in Og such that |w| > |mr|. In fact, this definition is
independent from the choice of the element w (cf. [Sch17, Lemma 1.4.5, p. 43-44]).
The field K is perfect and complete and has characteristic p (cf. [Schl17, Proposition
1.4.7, p. 45]). Moreover, the field (C;’, is algebraically closed (cf. [Sch17, Proposition
1.4.10, p.46-47]). The theory of perfectoid fields was originally established by Peter
Scholze (cf. [Sch1l1]) but Schneider’s book covers all of the theory we do need here.
Let from now on, as in [Sch17, Definition 1.3.2, p.29|, ¢ € R[X1,...X,] be a fixed

Frobenius power series associated to 7y, i.e. we have

#(X) =7 X mod deg 2
gf)(X) = X9 mod WLC)L[[X]].

Let furthermore G4 € Or[X, Y] be the Lubin-Tate formal group which belongs to
¢ (cf. [Schl7, Proposition 1.3.4, p.31]). For a € O, denote by [a], € Or[X] the
corresponding endomorphism of G, (cf. [Schl7, Proposition 1.3.6, p.32]). Note
that we then have [a]4(X) = aX mod deg 2 and [r1] = ¢ (loc. cit.). We then set
M :={z € Q, | |z| < 1} and obtain that the operation

OL x M m
(@, ) ————laly(2)

makes 9 into an Or-module (cf. [Sch17, p.33]). Then, for every a € Or, we can

view [a], as endomorphism of 9t and therefore are able to define
Ggn = ker([n7]g: M — M) = {z € M| [7]]s(x) = 0}.
Note that (G¢.n)n is via [71]s an inverse system and we let
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be the projective limit of this system. (cf. [Sch17, p.50]). TG4 is also called the Tate
module of the group G4. From [Sch17, Proposition 1.3.10, p. 34] we can deduce that
TG4 is a free O-module of rank one.

Following [Sch17, (1.3.9), p.33] we let L, = L(G4[n}]) and Lo = U,L,. De-
note as there the Galois group Gal(L|L) by I'r, set 'z, = Gal(L,|L) and
H; = Gal(Qy|Ls). Define furthermore K, = K(S94[r7]) = KL, and
Koo = UpK, = KLo as well as I'x = Gal(K«|K) and Hyx = Gal(Qp|Kw). These

definitions can be summarized in the following diagram:

Q,
Hg
HL GK
Koo
N /

Ly 'k
Iy K

L/

Remark 3.1.1.

The group T'r, is isomorphic to OF wia the Lubin-Tate character xir.
Furthermore, I'r, acts continuously on TG4 via xr, i.e. for ally € I'y, and t € TGy

we have

vt =xe(y) -t = e (Ml (®).
Proof.
For the first assertion see [Sch17, (1.3.12),p. 36|, the second follows immediately from
[Sch17, (1.3.11),p. 34-35] and is also stated at [Sch17, (1.4.17),p. 51]. O
Remark 3.1.2.

One can view ' as an open subgroup of I'f,.
If, in addition, K|L is unramified, then we have I'g =2 T'.

Proof.
G is a subgroup of Gy, it is closed (since it corresponds to a subfield of Q,|L) and
it’s index is (G : Gk) = [K : L], which is finite, i.e. Gk is an open subgroup of Gp.
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Furthermore because of Ko, = KL it is Hx = Hj, N Gk, which is the kernel of the
canonical homomorphism Gg — G, — G /Hp. Since the canonical projection is,
by definition, open, this homomorphism is continuous and open and therefore induces

a continuous and open inclusion
g = GK/HKC—> GL/HL =Ty.

Let now K|L be unramified. Since, for all n € N the finite extension L,|L is
Galois and totally ramified (cf. [Sch17, Proposition 1.3.12, p. 35-36]), the extension
K, = KL,|K also is Galois and totally ramified. The Galois group of K,|K then
is isomorphic to Gal(L,|L, N K) but since L,|L is totally ramified and K|L is, by

assumption, unramified it clearly is L, N K = L and therefore we obtain
Gal(L,|L) = Gal(K,|K).
From this we deduce the claimed isomorphism

Ty, = lim Gal(Ly| L) 2 Jim Gal(K,|K) = T'x.

3.2 THE COEFFICIENT RING

We first want to recall the definition of the coefficient ring used in [Sch17] and then
deduce the coefficient ring in our general case.

Before going into the construction of the coefficient ring, we want to recall the ring
oy = lim O /TR0 ((X)).
n

from [Sch17, p.75]. This ring will be prototypical for our coefficients if we can bring

the variable X to life. Schneider then explains, that 77, carries an action from I'y, by

FL XJZ{L .Q{L
(v, ) —— F(Ixe(M]s(X)).

and an injective Op-algebra endomorphism

oLt AL A,
fr——f(lrL]s(X))
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(cf. [Sch17, p.78]). At [Sch17, p.79] Schneider defines a weak topology on <7}, for
which the Or[X]-submodules

Uy = XmOL[[X]] —i-ﬂ'TJZ{L

form a fundamental system of open neighbourhoods of 0 € /7. He makes several

observations for /7, which we want to summarize in the following proposition.
Proposition 3.2.1.

1. As @r(9)-module <7, is free with basis 1, X, ..., X971,

2. With respect to the weak topology <71, is a complete Hausdorff topological O, -

algebra.

3. The endomorphism @1, and the I'p-action are continuous for the weak topology.
Proof.

1. [Sch17, Proposition 1.7.3, p.78§].
2. [Sch17, Lemma 1.7.6, p. 79-80].
3. [Sch17, Proposition 1.7.8, p. 80-82].
O

Let us now head towards the definition of our coefficient ring. An important part
is, that one can find an element w € ch , such that X — w defines an inclusion
kr((X)) — C;. As in [Sch17, p. 50| we denote the image of this inclusion by E;, and
we want to recall from loc. cit. that E is a complete nonarchimedean discretely
valued field, with uniformizer w and residue class field kj. Let in addition E;: denote
the ring of integers inside E;. Furthermore, Ej carries a continuous operation
by I'z, for wich we have v-w = [xr(7)]¢(w) mod 7r, (cf. [Schl7, Lemma 1.4.15,
p.51]). By raising elements to its gz-th power, it is clear that Ey also carries a
Frobenius homomorphism, which is continuous and the reduction modulo p of ¢y
Let furthermore Ezep denote the separable closure of E;, inside (CZ and let EsLep’+
denote the integral closure of E] inside EP. A really helpful fact is the following:

Theorem 3.2.2.
The Galois group Gal(ETP|Ey) is isomorphic to H,.

Proof.
This is [Sch17, Section 1.6, p. 68-75] and [Sch17, Theorem 1.6.7, p. 73-74] in particular.
O
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Then Schneider lifts w to W (EL)r C W(O(cz),; and calls this lift wg (cf. [Sch17,
Section 2.1, p.84-98; in particular p.93]). Here one cannot just take the Teichmiiller

lift, because one wants that the lift fulfills the following relations

Fr(wg) = [mL]p(we)
7wy = o (1)]g(we)

for all v € I'y, and where Fr is the Frobenius on W((CZ,)L (cf. |Sch17, Lemma 2.1.13,
p. 92-93]| for the Frobenius and [Sch17, Lemma 2.1.15, p. 95| for the I'z-action). Similar
to the construction of Er, sending X to wy then defines an inclusion &7, — W(Er)r
(cf. [Sch17, p.94]). In Particular, it gives us a commutative square (loc. cit.)

X—w
o Y S W(EL)L

| |

k(X)) Xow gy

Following Schneider, we let A denote the image of the inclusion <, — W(Ep).
In addition, define
AT =0pwy] = AL NW(E])L.

He then also endows A with a weak topology, induced by that from W((C;’,) L, and
observes that the isomorphism /7, = A, then is topological for the weak topologies
on both sides (cf. [Sch17, Proposition 2.1.16, p.95-96]). Furthermore, he proves that
this topological isomorphism respects the I';-actions on both sides, where A -carries
a I'r-action induced from the Gr-action of W((CZ)L (cf. [Sch17, p.94]) and states that
what is ¢, on &7, is the Frobenius on Ap, which again is induced from the Frobenius
on W((C;)L (cf. [Schl7, Proposition 2.1.16, p.95-96]). We therefore denote the
Frobenius on Ap, also by ¢r. An immediate consequence then is, that the I'z-action
and (g, are continuous on Ary.

This then is the coefficient ring in for Schneiders (¢r,I'r)-modules (cf. [Schl7,
Definition 2.2.6, p. 100-101|) but since we want to establish (¢, I')-modules over a
finite extension K |L as it was done in the classical way (cf. [FO10, Definition 4.21,
p. 81]) for finite extensions of @, we transfer this construction to our situation. Let for
this AY" C W(ET?)r be the maximal unramified extension of A, inside W(E7?)r.
In particular [Sch17, Lemma 3.1.3, p. 112-113| says that for every finite, separable
extension F'|Ey, inside ET?, there exists a unique ring A (F) € W(ET?) containing
A7 such that A" is the colimit of the family Ay (F'). Additionally Schneider defines
the ring A as the closure of A} inside W(E}") with respect to the 7z-adic topology
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and observes (cf. [Sch17, p.113 and Remark 3.14, p. 114|)
A =1lim AT /T AT
oy

He then also states that both, A}" and A, have an action from G, that the Frobenius
on W (ET?) preserves both rings, that they are discrete valuation rings with prime
element 7y, where A is even complete and that their residue class field is ESLelD (cf.
[Sch17, p.113-114]). In fact, the Gr-action on both A} and A is continuous for
the weak topologies, since the G, action on W(Cg)) 1 is continuous for the weak
topology (cf. [Sch17, Lemma 1.4.13, p.48-49] and [Sch17, Lemma 1.5.3, p. 65-66])
and both, the weak topology and the G, action on AY}" respectively A, are induced
form W((C;) - In addition, then every subgroup of Gz, acts continuously on A" and
A. Furthermore we have the relation (cf. [Sch17, Lemma 3.1.6, p. 115-116]|)

(A = A;.
This then leads us to the definition

Ay = (A)HK,
In addition, define

AT = ANW(E™Y)
AT = AP N W(EST),
Al = A NW(ETPT).

Then, since by definition it is Ap € Ag, € W(ET?)L, the ring Ay is a complete
nonarchimedean discrete valuation ring with prime element 77, and the restriction
of the Frobenius from W (E?). gives a ring endomorphism of A K|z Which then
also commutes with ¢ (cf. [Schl7, Lemma 3.1.3, p.112-113|). We will denote
this endomorphism by ¢/ Furthermore, since A carries an action from G, and
therefore also one from Gk, the ring Ak, carries an action from I'c. Next, we want
to define a weak topology an Ay, deduce some properties and see that ¢g|7, and

the action from 'k are continuous for this topology.

Definition 3.2.3.

The weak topology on any of the rings A, A}, Ag; and Ay is defined as
the induced topology of the weak topology of (W(C?,)) 1, (for the latter see [Schl17,
p. 64-65]).
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Remark 3.2.4.

The weak topology on W((CZ)L is complete and Hausdorff (cf. [Sch17, Lemma 1.5.5,
p.67-68]) and W((C;)L is a topological ring with respect to its weak topology (cf.
[Sch17, Lemma 1.5.4, p. 66-67]). Therefore, the induced topology on any of the rings
A, AT, Ay and Ay is Hausdorff and these rings are topological rings.

The question now is, wether ¢, and the action from I' are continuous for the

weak topology on A r. For this, we want to recall a well-known fact.

Lemma 3.2.5.
Let X andY be topological spaces, f: X — Y be a continuous map and let Z CY be
a subspace with im(f) C Z. Then f: X — Z is continuous.

Proposition 3.2.6.
The from W(EsLep)L induced I'c-action and the induced Frobenius pg |1, on A, are

continuous.

Proof.

This now is an immediate consequence of Lemma 3.2.5 and the fact, that G, acts
continuously on W(ET?)y, (cf. [Sch17, Lemma 1.5.3, p. 65-66]) as well as that Fr is
continuous on W (ET?) with respect to the weak topology:

Since the maps
GL X Agp— G x W(EL"), —= W(ET")L

and
A W(ESP), T W(ESP),

are continuous as composite maps of continuous maps and their image is inside A r,
(for the latter see [Sch17, Lemma 3.1.3, p. 112-113|) the claim follows. O

We want to end this section by fixing some notation, defining weak topologies on
modules over any of the above rings and calculating the residue class field of Agz.
We start by fixing notation and denote by the quotient field of Ay. Similarly we
denote by B, Bg|; and B}’ the quotient fields of A, Ay, and A7', respectively.
Furthermore, set Eg, = (E7")% and let E;qu
inside E. In Lemma 3.2.13 we will see that Egy is the residue class field of Ay .

denote the integral closure of EJLr

Beforehand, we define weak topologies for modules.
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Lemma 3.2.7.

Let R € {A, A}, Ak, AL} and M be a finitely generated R-module. If k,l € N
such that RF — M and R' — M are surjective homomorphisms, then the induced
quotient topologies on M coincide (where R* and R' carry the product topology of the
weak topology on R).

Proof. This is |Klel6, Lemma 3.2.2 (i), p. 100-102|. There, in fact, is no proof for
Ak 1, but in his proof, the author only uses that the coeflicient ring is a topological

ring with respect to the weak topology, what we stated in the above Remark 3.2.4. [

Definition 3.2.8.
Let R € {A, A}, Ak, AL} and M be a finitely generated R-module. The weak
topology on M is defined as the quotient topology for any surjective homomorphism

RF — M, where R* carries the product topology of the weak topology on R.

Lemma 3.2.9.

Let R € {A, A}, Ak, AL} and M be a finitely generated R-module. Then M with
its weak topology is a topological R-module and if M = My ® Ms, then the weak
topology on M coincides with the direct product of the weak topologies on the My and
M.

Furthermore, if N is another finitely generated R-module and f: M — N 1is an
R-module homomorphism, then f is continuous with respect to the weak topologies on

both M and N.

Proof. This is [Klel6, Lemma 3.2.2 (ii)-(iv), p. 100-102]. Again, there is no proof for
A g, but the property used is that of a discrete valuation ring, which A, also
fulfills. O

Proposition 3.2.10 (Relative Ax-Sen-Tate).
Let X be a nonarchimedean valued field of characteristic 0, KX an algebraic closure

with completion C and L£|X a Galois extension within K with completion L. Let
furthermore H < Gal(L|X) be a closed subgroup. Then it holds

(D) = ("),

Proof.
This is an immediate consequence of the usual Ax-Sen-Tate theorem (cf. [FO10,
Proposition 3.8, p.43-44| ):

Since £|X is algebraic, X is also an algebraic closure for £ and then we deduce (loc.
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cit.)

et = L.
Infinite Galois theory then says that we have H = Gal(£|LH) =2 G u /G. Together
with Ax-Sen-Tate we then deduce

(LH)/\ — @GeH — (GG,;)H _ (E)H
O

For our purposes the following integral version of the above Relative Ax-Sen-Tate

Theorem will be the interesting one.

Corollary 3.2.11.

Let K be a nonarchimedean valued field of characteristic 0, K an algebraic closure
with completion € and £|X a Galois extension within K with completion L. Denote
by O2 the ring of integers of any of the above fields. Let furthermore H < Gal(£|X)
be a closed subgroup. Then it holds

(02)7 = ((0)")".

Proof.

For an element z € € we have

z € (0p)" < € (L) with [2] < "% € (LH)" with |o] < 1< € (00)")",

where the last equivalence comes from the fact that the integers of the completion

are the completion of the integers. O

Lemma 3.2.12.
]t hOldS (Alir)HK = AK\L

Proof.
This is a direct consequence of the above Corollary 3.2.11. This namely says that

AK\L = (A)HK = ((Alir)HK)A-

But since (A¥)Hx|A is finite and A, is complete, (A¥)Hx itself is complete, i.e.
it is

(AR = (AF)T)" = Agyr.
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Lemma 3.2.13.
Eg|p, is the residue class field of Akr.

Proof.

We have an exact sequene

0 Ay TE AN AY /m AN —— 0.

By taking Hg-invariants and using (A¥)#x = A K|z from Lemma 3.2.12 we obtain

the exact sequence

00— Ay, —== Ag|L (ESP)HE —~ HY(Hg, A™).

Since B}*|By, is unramified, and therefore also tamely ramified, we get from [NSW15,
(6.1.10) Theorem, p. 342-342] that A}" is a cohomologically trivial Hy-module. There-

fore the right term in the latter sequence is equal to zero and we get the exact sequence

T

0 Ak Ak ExL 0

which ends the proof. O

3.3 CONCRETE DESCRIPTION OF WEAK TOPOLOGIES

As the title says, the goal of this chapter is to give a concrete description of both,
the ring Ay, and its weak topology. We will start with the topology and first we
want the recall the description of the weak topology of A and recall that a similar
description holds true on W((CZ,) L

Remark 3.3.1.
[Sch17, Proposition 2.1.16 (i), p.95-96| says that the weak topology A has an
analogous description as the description above. Concretely, a fundamental system of

open neighbourhoods of 0 for the weak topology on Ay is given by
WAL + 7 AL, m > 1.

Remark 3.3.2.
A fundamental system of open neighbourhoods of O for the weak topology on W(C?))L
is given by the W(OC%)L—submodules

ngW(OCz)L + WTW(C;)L, m > 1.
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Proof.

Because of |®g(ws)|, = |w|, = |71]7/9~1 < 1 (cf. [Sch17, Lemma 2.1.13 (i), p. 92-93)|
for the first equality and [Sch17, Lemma 1.4.14, p. 50| for the second) this is exactly
[Sch17, Remark 2.1.5 (ii), p. 86-87]. O

The above remarks raise hope, that a similar description holds true on intermediate
rings. In fact, in the following Proposition we will show, that the above description
of the weak topology on A extends to unramified, integral extensions. Its proof is a
generalization of [Sch17, Proposition 2.1.16 (i), p. 95-96].

Proposition 3.3.3.
Let B|By, be an unramified extension, A C B the integral closure of Ap in B and set
AT = ANW(ET™T)..
Then the family
u)glAJr +7 A, m>1

of AT -submodules of A forms a fundamental system of open neighbourhoods of 0 for
the weak topology on A.

Proof.
Since we have wéfAJr C w$W(OC;)L and 7'A C W?W(CZ)L for all m > 1, we also
get

W AT + A C (W W (Og, )L, + TPW(C))) N A

for all m > 1, i.e. the topology on A generated by the family (wg‘AJr + 7P Ay, is
finer then the topology induced from W((C]bj) L

To see that it is also coarser, let E|Er be the residue class field of A and ET be the
integral closure of E] in E and consider the following families of W(OC; )-submodules
of W(C))p:

Vi = {(bo,bl, L) EW(O)L | o, bt € w”oq},

Umm = {(bo,bl,...) S W((C;)L | boy .- b1 € w”(‘)cz} .

These are introduced in [Sch17, Section 1.5, p. 64-68] to define the weak topology on
W((C;) L. In particular, the Uy, ,, give a fundamental system of open neighbourhoods
of 0in W((CZ,)L (loc. cit.) and the V,, ,,, give one of W(OC%)L. Since wy is topologically
nilpotent (cf. [Sch17, Lemma 2.1.6, p.87]) we can find for any k¥ € N an element
n € N such that wj € Vi, But since ®o(wy) = w, i.e. wy = (w, ... ), the condition

wg € Vim implies n > k. Therefore we can find an increasing sequence of natural
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numbers m <[y < --- < [, such that

L
wgf eV 11 forall 2 <i<m.
qy, M

Since A only contains positive powers of wg, this then implies, that for all 2 < i <m
we have

L
w;]f A+ g Vzi,1+1 .
qy, M

We will now show that
Uqle,m NAC ngAJr + 7wt A.

For this let f,, € qum ) A. We then have
L

Since by [Sch17, Lemma 3.1.3 (b), p. 112-113] the diagram

A W(E)L
BN

Im
commutes, we can find g, € wiL AT and f,,_1 € A such that
fm = gm + 7L fm-1.

Im
Recall wgf AT CVy, ,+1 from above and obtain
qr, M

WLfmfl = fm - gm € (Uqle7m + ‘/;1le71+1 ) m A = Uqlefl+17m m A

,m

Then [Sch17, Proposition 1.1.18 (i), p. 16-17| says that, if f,,—1 = (bo,b1,...) for
some b; € CZ, then we have 7, f,—1 = (0,b8", 6", ...). This then immediately implies

fm—1 €U, NA. This means that we can do a decreasing induction form >1i > 1
qr, ;M

b
and find for every such i elements g; € wgf AT and f;_1 € A such that

fi=gi+7mrfic1.
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Putting all this together, we get
m .
Jm = Zﬂ'?_zgm + WTfo-
i=1

In particular we have

m . 1
Z T gm € w?f AT C w?/ﬁ.
=1

Therefore we have f,, € w?ﬁA* + 7' A which was exactly the statement we wanted

to see to end the proof. O

Corollary 3.3.4.
A fundamental system of open neighbourhoods of O for the weak topology on Ay,
(resp. AY*) is given by the A}‘L— (resp. ATF-) submodules

w$ }F(\L + 7 Ak, m > 1, respectively

wglArLlr’+ + AT, m > 1.

Proof.
This is an application of Proposition 3.3.3. ]

Proposition 3.3.5.
The weak topology on Ay coincides with the weak topology of Ay, considered as
A -module.

Proof.

If (u;); is an Ap-basis of A\, then (wgul)l is so for all k > 0. Therefore Ay, has

+
K|L®

Corollary 3.3.4 together with Corollary 3.3.1. 0

an A j-basis consisting of elements of A The claim then follows from the above

Proposition 3.3.6.
The canonical inclusion A g ;, — A is a topological embedding. Furthermore, for every
n € N the induced inclusion AK‘L/WEAKM — A /7 A is a topological embedding as

well.

Proof.

Because of

AK|LﬂA:AK‘LﬁAﬁW(OCz)L :AK|LﬂW(OC;)L
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the first part of the assertion follows from the definition of the weak topology. The

second then follows from the commutative diagram

Agp———A

| |

AgiL/m Ak L A/TLA.

Proposition 3.3.7.
The weak topology on A coincides with the topology of the projective limit @1” A/t A
where each factor carries the quotient topology of the weak topology on AY.
Moreover, a fundamental system of open neighbourhoods of O for the weak topology on
A is given by the sets

wi AT A m > 1L

" +
Note that, by definition, AT = A7

Proof.

For this proof, we will refer to the latter topology of the Proposition’s formulation as
the projective limit topology.

As in the above Proposition 3.3.6 the inclusion A" < A clearly is a topological

embedding and since the diagram

AC A
AT/ AN —— A /7 A

for every n € N is commutative, the quotient topology on A} /77 A} with respect

to the weak topology on A" coincides with its quotient topology with respect to the

weak topology on A. Therefore the canonical projections
A =lim A} /P A} —= A} /LAY

are continuous for the weak topology on A. This means that the weak topology of A
is finer than its projective limit topology.
From Proposition 3.3.3 we deduce that a fundamental system of open neighbourhoods

nr

of 0 for the quotient topology of the weak topology on A} /77 A" is given by the
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sets
w;”Azr’+ + 7P AT, m > 1.

Then the sets
ngAIE”Jr + 7T A, m,n>1

form a fundamental system of open neighbourhoods of 0 for the projective limit
topology on A. But clearly the sets with m = n define the same topology. Since the
weak topology is defined by the sets

(wg (0cy)1 + 77" (@;)L) NA, m>1
(cf. Remark 3.3.2) and we clearly have
WA A C (wj;W(oC;)L n WTW((C;)L) nA
for all m > 1, the projective limit topology is finer than the weak topology. O

Lemma 3.3.8.
Let k be a finite field and E|k((X)) be a finite, separable extension. Then there exists
a finite extension klk such that E = k((Y)).

Proof.
This is [Kupl5, Lemma 1.38, p.20]. O

Lemma 3.3.9.

Let K'|k be an extension of finite fields and k'((Y))|k((X)) be a finite, separable
extension. Then the Y -adic and the X -adic topologies on k'((Y')) coincide.

In particular, there exists a l € N such that for all n € N it holds

X"E Y] C YK [Y] € X K [Y].

Proof.

Since k[X] is a discrete valuation ring with respect to its X-adic topology and £'[Y]
is so as well with respect to its Y-adic topology, we deduce from usual ramification
theory, that there exists a [ € N such that

Y Y] = XK[Y].

Since YK'[Y] is the maximal ideal of k'[Y] it clearly is XK'[Y] C YK[Y] and
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therefore we get for all m € N

X v] c Y™K Y] € XK [Y].

Lemma 3.3.10.

Let E|Ey, be a finite and separable extension. Then the subspace topology on E induced
from the topology of C; coincides with the extension from the w-adic topology on Er, .
Note that the latter topology is the w-adic topology on E, due to the above Lemma
3.3.9.

In particular, the integral closure ET of Ezr inside E consists of exactly those elements

of E whose absolute value in C; 1s less or equal to 1.

Proof.
We denote the absolute value induced from (C;7 by |- |, as in [Sch17, Lemma 1.4.6,
p.44-45] and we use the identifications E = k((Y)) as well as Ef, = kr((X)) (cf.
Lemma 3.3.8), where x|kr, is a finite extension.
The maximal unramified intermediate field of x((Y"))|kr((X)) is k((X)) and therefore
it exists a | € N and g; € s[X] for 0 < i < [ with X | g; and X2 { go such that (cf.
[Ser79, Chapter I, §6, Proposition 17, p. 19])

-1

Z Y +vYli=0.

=0

Since | X|, < 1 and |z|, = 1 for x € k (in particular, every nonzero element coming
from a finite field has absolute value 1 in Og, with respect to | - |,) we have |g;[, <1
p

for all 0 <4 < [ and we can deduce
Y, < max|g;, |V, < max|Y*
[Y*], < 0§?<l|gl|b’ lp < 0§?<l| b

and therefore Y|, < 1. Furthermore, since we have Y'k[Y] = Xx[Y] we can find a
g € k[Y] such that Y! = Xg and since |Y|, < 1 we then deduce |g|, < 1 and

Yy = [Xslgly < X, < 1.
But this then immediately implies

|Y|b < 1.
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Since X | go and X?{ go it is |go|, = | X |, and because of X | g; for all 0 < i < [ we
also have

\gol, > |gil, forall 0<i<I.

Since Y|, < 1 we deduce from the above
Ig0ls > |gils|Y"], for all 0<i<I

and therefore

Y, = 1g0], = | X,

because | - |, is a nonarchimedean absolute value.
Denote by | - | the extension of the absolute value of E;, (which corresponds with
the w-adic topology) to E. Then we deduce from [Ser79, Chapter 2, §2, Corollary 4,
p. 29| that

V'] = [Nor(Y)},,

where Nor denotes the norm of the extension £((Y))|x((X)). From the polynomial

we started with we then can deduce Nor(Y') = go and therefore
Y = |goly, = 1X],-

This means that |- | and | - |, coincide on E.
From the identification above we deduce E* = k[Y]. But since |Y|, < 1, these are

exactly the elements of E whose absolute value is less or equal to 1. O

Corollary 3.3.11.
Eg r is, with respect to the topology induced from (Ckz’,, a complete, nonarchimedean
discretely valued field of characteristic p with residue class field ki and ring of integers

+
B,

Lemma 3.3.12.

Let X be a topological space and (Yy), a family of subsets of X with Y, C Y,41.
SetY = lignY =, Yn. Then, the subset topology on 'Y coincides with the final
topology of the inductive limit with respect to the subset topologies on the Y,,.

Proof.

First we show that the canonical injections f,,: Y;, < Y are continuous for the subset
topology on Y. This then implies that the subspace topology on Y is coarser than
the projective limit topology since the latter is the finest such that all injections f,

are continuous (cf. [Bou89a, Chapter I, §2.4, Proposition 6, p. 32]).
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Let U CY be open and V C X open such that U =V NY. Then it is
AU =UNY,=VnVnY,=VNY,,

ie. f,}(U) CY, is open.

It is left to show, that the subspace topology is finer then the direct limit topology.
For this, let U C Y be open with respect to the direct limit topology, i.e. it
is U =, f,1(U), where for every n € N it exists an open V,, C X such that
Y U)=V,NY,. Weset V:=JV, and claim U = V NY. To see this, let u € U.
Then it exists n € N such that © € V,, NY,, and in particular v € V. Conversely let
u € VNY. Then, by definition, there exist ni,n2 € N such that u € V,,;, and u € Y,,,.
For n := max{ni,n2} we then deduce u € V,, N'Y,, and therefore v € U. O

Proposition 3.3.13.
The integral closure ET>" of E} inside EYP consists of exactly those elements with
absolute value | - |, less or equal to 1.
Furthermore, the topology on BT induced from (CZ, coincides with the final topology
with respect to the colimit

Ef= |J E

EEr
fin, sep

where each E carries the topology induced from (CZ.

In particular, the EsLep’+-subm0dules
Sep7+
w'E}
form a fundamental system of open neighbourhoods of 0 for this topology on ETP.

Proof.

This now is an immediate consequence of Lemma 3.3.10 and Lemma 3.3.12. O

3.4 STRUCTURE OF COEFFICIENT RINGS (UNRAMIFIED CASE)

For this section, let K|L be an unramified extension. Then it is a Galois extension
and its Galois group is isomorphic to the Galois group of the respective residue class
fields. It therefore is cyclic and generated by the lift of the qz-Frobenius x — z9Z.
We will denote this lift by o7, and call it Frobenius on K. Recall also from Remark
3.1.2 that the groups I';, and ' are isomorphic and for every n € N the groups

I'z,. 1z and 'k, are isomorphic as well.
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Remark 3.4.1.
We have (Hp, : Hi) = [K : L].

Proof.
Since I'r, 2 T' (cf. Remark 3.1.2) we have (Hp, : Hx) = [Ko : Loo) = [K : L]. O

Lemma 3.4.2.
We have kxEj, = Eg .

Proof.
Since k is fixed by Hp it clearly is kxEj, C Egr. Since K|L is unramified we have
[K : L] = [kk : k1] and therefore

[kKEL : EL] = [k‘K : k‘KﬂEL] = [k‘K : k‘L] = [K : L] = (HL : HK) = [EK|L : EL].

O

Lemma 3.4.3.
We have Ak = Ok ®o, AL and B, = KBy,

Proof.

Since K|L is unramified Og ®¢, A is unramified over A and since K is fixed
by Hg we deduce Ox ®o, A C Ag/r. Since both are free Ar-modules of rank
[K : L] = (Hp : Hg) they coincide.

The statement for the fields of fractions then follows immediately. O

In order to understand how the operations of I'x- and the Frobenius look on A,
respectively By, it now suffices to understand the corresponding operations on O

respectively K. Note, that since K|L is unramified, we clearly have W (kg)r = Ok

Lemma 3.4.4.
Let Fr denote the (restriction of the) qr-Frobenius on kg . Then the automorphism

ok on O coincides with the restriction of W(Fr)z,.

Proof.

Due to the functoriality of the Witt construction, W (Fr)y, is an automorphism on
Ok which fixes Op, it induces also an automorphism on K which fixes L and it’s
reduction modulo 77, is Fr. The first observation says, that the restriction of W (Fr)y,
is an element of Gal(K|L) and since Gal(K|L) and Gal(kx|kr) are isomorphic via
o +— o mod 7, the second observation says that the restriction of W (Fr)y, is a lift
of Fr. Since this lift is unique we get the desired equality W (Fr), = ok on K
respectively O O
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Before we give explicit descriptions of the operations on A7, we want to fix some

notation.

Definition 3.4.5.
Let ¥ be an Op-linear endomorphism of Ok and f € Ay, we denote by 1 the
element, on which ¥ is applied to the coefficients of f, i.e. if f(wy) = aiwé then

Flwg) =D Wan)wh.
1€Np
Proposition 3.4.6.
Let f = f(wy) = Zaiwé € Ay, and v € T We then have

v f = ailar(n)]e(wy)-

1EL

For the Frobenius ¢, we have

SOK\L(f) = Z 0K|L(ai)[7TL]¢(W25)-

S/
Together with the above Definition 3.4.5, we then have the description
orL(f(we)) = fIEIE 0k L (we))-
Proof.
This is an immediate consequence of Remark 3.1.2, Lemma 3.4.3 and Lemma 3.4.4. [
3.5 STRUCTURE OF COEFFICIENT RINGS (GENERAL CASE)

Lemma 3.5.1.
Let k be a finite field of cardinality ¢ and E|k((X)) be a finite, separable extension.
Then it holds

q—1
E=PxE".
i=0
Proof. This is [Kupl5, Lemma 1.39, p. 21]. O

Proposition 3.5.2.
qr—1

A= @ Fr(A)wé.
1=0

Proof. This is [Kupl5, Proposition 1.41, p.21-22]. O]
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Corollary 3.5.3.
qr.—1

Axin = P exip(Axi)wh.
i=0

Proposition 3.5.4.
Let B|By, be a finite, unramified extension and A C B be the integral closure of Ap.

Then there exists a finite, unramified extension E|L and an element vy € W(EF?)p

with I/é = wy for some j > 0 such that
A=1imOp/mr0p((v))-

Proof.
Let s be the residue class field of A and recall that the residue class field of Ay, is
E; = kr((w)). Since B|B[, is unramified, we then have

[B:Bgr] =[k:kp((w))]

Since k|kr((w)) is finite and separable (B|By, is unramified), we deduce from Lemma
3.3.8 that x = k((v)) for some finite extension k|k;, and v € EY? with 1/ = w for
some j > 0. But then there exists a unique finite and unramified extension E|L
with kg = k. In particular, we have j[E : L] = [B : By]. Furthermore, since By,
is a complete discrete valuation field, and B|By is a finite extension, the henselian
lemma in the sense of [Neu07, II §4, (4.6) Henselsches Lemma, p. 135-136] holds true
and therefore we can find a vy € B C W(ET?), which is a root of the polynomial

X7 — wy and for which we have
vy mod 7y, = v.
Since X7 — w, is irreducible over By, and E|L is unramified, we deduce

[EBL(vg) : Br] = [EBL(vg) : BL(vg)] - [BL(vg) : Br]
= [E : EﬂBL(V¢)] g

and therefore
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In particular, we have

B = {Zaw@

1€Z

a; € E, lim a; =0 and it exists n € N

1——00

such that 77a; € O for all i € Z}

Then A consists of those elements of B with 7y -adic absolute value < 1. Since this ab-
solute value is nonarchimedean, these are exactly those elements
Yicz aiyés € B with a; € O for all 1 € Z, i.e.

A 1im Op/m305((vs)).

n

3.6 (¢xr,'x)-MODULES AND GALOIS REPRESENTATIONS

Before we give the definition of (¢ gz, 'k )-modules, we want to recall some useful
tools. If not otherwise stated, all continuity statements refer to the corresponding

weak topology.

Definition 3.6.1.

Let M be an A z-module. We regard M as a left-A gz -module and Ay, itself
as a right-A i -module via ¢ . For the tensor product in this situation we write
Ak SDK|L®AK|LM’ which is per definition an abelian group, but since Ay, is also
a left- A gz -module (with the standard multiplication) this tensor product is also a
(left)-A k| -module.

Remark 3.6.2.
As a set AR\ g, @Ak M is equal to the standard tensor product Ay, QAL M,

but since we regard Ay g, as right-A g r-module via gk |1, we have the relation
T ®am = vpk(a) @m,
Jor all x,a € Ak, and m € M. Note also that we have
a(r @m) = (ax) @ m

Jorall a,z € Ay, and m € M.
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Lemma 3.6.3.
The functor

MOd(AK|L) — MOd(AK|L),M — AK|L SOK|L®AK|LM

15 exact.

Proof.

Since A, is a discrete valuation ring and Ay, is free as (right-) A gz -module via
¢, (cf. Proposition 3.5.3), this is [Bou61, Proposition 3, p. 29]. O

Definition 3.6.4.
Let M be a finitely generated A r-module equipped with a ¢ z-linear endomor-

lin

phism ¢as. Then ¢j} denotes the homomorphism

30%1: AK|L oL OAg M M
femi for(m).

Definition 3.6.5.

A finitely generated A g ;-module M is called (¢k/r, 'k )-module if it is equipped
with a ¢z-linear endomorphism s and a continuous, semilinear action from I'g,
which commutes with the endomorphism ¢,y.

A (¢k|r, 'k )-module is called étale if the homomorphism @' is bijective.

A morphism of (¢ |z, 'k)-modules f: M — N is an A gr-module homomorphism,
which respects the actions from 'k and the endomorphisms @a; and ¢y .

We will denote the category of étale (¢ gz, 'k )-modules by Modif,F(AK‘L).

Definition 3.6.6.
We denote the category of finitely generated Op-modules together with a continuous

Or-linear action from G, the so called G g-representations of Op, by Repgf) (Gk).

We now will define two functors between Mode(A x|r) and Repgf)(G k) (one
in each direction) from which we then in the following section will prove that they

define an equivalence of these categories.

Definition 3.6.7.
Let M € Modf;,t’F(AKw). We then define

Vi (M) = (A ®@a,, M)TFEem=t,



CHAPTER 3. LUBIN-TATE (¢, I')-MODULES 75

Remark 3.6.8.

At the moment, Vi1, gives a functor from Modfﬁr(AK‘L) to the category of Op-
modules with a group action from Gg. If we want to see that it is a functor with
image in Repgi)(GK) we have to show that for M € Modf‘pt’F(AK‘L) it holds:

L. Vg (M) is finitely generated as Op-module.
2. The Gg-action is continuous.

Before we go into the prove of this, we want to define the functor in the opposite

direction and explain what we have to prove in order to see that it is well defined.

Definition 3.6.9.
Let V € Repgf)(GK). We then define

My (V) = (A ®, V)IE.

Remark 3.6.10.

As before, at the moment, My, defines a functor from Repgi)(GK) to the category
of A 1,-modules which have a group action from ' and an endomorphism induced
Jrom Fr which commutes with the action from IU'k. In order to see that Mgy, has
image in Modf,f,r(AK‘L) we have to show that for V € Repgf)(GK) it holds:

L. Mg (V) is finitely generated as </g|r-module.
2. The endomorphism induced from Fr is continuous.

3. The I'i-action is continuous.

lin . . .
4. Phgey(v) B8 N isomorphism.

The proof, that the categories Modi,t’F(A K|r) and Repgf)(G K) are equivalent,

will be the content of the next three sections.

In the first section, we give the general idea of the proof and explain what we exactly
have to prove. In the following section we will give a proof in characteristic p and
in the last section, we deduce from this the general equivalence. Our exposition in
these sections follows [Sch17, Chapter 3, p. 110-135] and explains how the results

from there transform to our situation.
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3.7 THE STRATEGY FOR THE EQUIVALENCE
f ~ g
Repy? (Gx) = Mod®(Agz)

In this section we want to prove as many of the conditions of Remark 3.6.8 and
Remark 3.6.10 as possible in the general case. For this we introduce two comparison
homomorphisms, which will give us some nice results if we can prove that they are
isomorphisms. The proof of the bijectivity will be the part of the following sections.

Additionally, they will lead us to the desired equivalence.

Lemma 3.7.1.
LetV € Repgi)(GK). Then

lin

Py (V) DKL ¢K|L®AK|LMK‘L(V)

Mg(V),

fomi [ ® onye ) (m)

18 an isomorphism.

Proof.
Because Corollary 3.5.3 and Lemma 3.6.3 say that Az, has the same properties as
A which are needed for [Sch17, Lemma 3.1.7, p. 116-117]|, the proof is the same as

the one of loc. cit. O

Definition 3.7.2.
Let V € Repy? (Gx). We then define

a.dVZ A ®AK|L MK|L(V) HA@OL \%

a @ mi am.

Remark 3.7.3.
ForV € Repgi)(GK) the map ady is a homomorphism of A-modules, it is compatible

with the diagonal G i -actions on both sides and it satisfies
ady o (Fr ® oy, (v)) = (Fr®id) o ady.

Definition 3.7.4.
Let M € Mod‘ir(AKw). We then define

adM: A®OL VK|L(M) 4>A®AK‘L M

a®@ vt av.
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Remark 3.7.5.
For M € Modé;’r(AKw) the map adps is a homomorphism of A-modules, it is

compatible with the diagonal G -action on both sides and it satisfies
adps o (Fr®id) = (Fr ® ¢ar) o adyy

Lemma 3.7.6.
Let V € Repgf)(GK). Then the diagonal action from Gk on A ®g, V is continuous

for the tensor product topology, where A carries its weak topology.

Proof.
This is literally the same as the proof of [Sch17, Lemma 3.1.10, p. 119-120]. O

Proposition 3.7.7.

LetV € Repgf)(GK) and assume that MK‘L(V) is finitely generated as A g|r-module
as well as ady is an isomorphism.

Then the induced Ik -action on MK‘L(V) and the endomorphism OMye (V) induced
from Fr are continuous for the weak topology and M1 (V') has the same elementary
divisors as V. This means, that if we have Mg (V) = @_ | Ak /77" Ak with
1<my <--- <ms <00 as Agr-modules by the main theorem for finitely generated
modules over principal ideal domains (cf. [Bos09, Korollar 7, p.80]), then we also
have V = @7_, 01 /77O as Or-modules.

Proof.

Lemma 3.7.6 induces that
Gg x MK|L(V) ——>Gg X ARy, V—A®y, V

is continuous and since this map has image in Mg (V') and reduces to the action
of 'k, since J\/[K|L(V) is, by definition, Hg-invariant, Lemma 3.2.5 says that the
I'k-action on M 1,(V') is continuous for the topology induced from the weak topology
of A ®p, V. Similarly, since

Freid
My, (V) A 0, VX A @9, V

is continuous with image in Mz (V'), Lemma 3.2.5 says that Py, (V) I8 continuous
on M (V') for the topology induced from the weak topology of A ®p, V. One
checks that this topology coincides with the weak topology on Mg (V) and the
statement on the elementary divisors as in [Sch17, Proposition 3.1.12, p. 122] where
we make us of Proposition 3.3.6 instead of [Sch17, Lemma 3.1.8, p. 118-119]. O
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Remark 3.7.8.
The above Proposition 3.7.7 together with Lemma 3.7.1 says that in order to check the

conditions from Remark 3.6.10 it suffices to check that for V € Repgf)(GK) it holds:

L. Mg (V) is finitely generated as A g|r-module.

2. ady is bijective.

Lemma 3.7.9.
Let M € Modfﬁr(AK‘L). Then the diagonal action from Gg on A ®a, M is

continuous for the tensor product topology of the weak topologies on both sides.

Proof.
Since Gk acts continuously on both, A and M, this is exactly the same as [Sch17,
Lemma 3.1.11, p. 120-122] (which makes only use of these properties). O

Proposition 3.7.10.

Let M € Modgip(AKw) and assume that V(M) is finitely generated over Oy, as
well as adps is an 1somorphism.

Then the diagonal action from G on Vi (M) is continuous for the mp,-adic topology
and VK|L(M) has the same elementary divisors as M. This is to be understood is in
the above Proposition 3.7.7:

If VK‘L(M) = @f ,0p/m7"0p with 1 <mq < --- < mg < oo as Op-modules, then
M = @7 Ak /7" Ak as Ag-modules.

Proof.

Lemma 3.7.9 induces that
Gi X VK\L(M) ——Gg x (A ®AK|L M) *>A®AK|L M

is continuous and since this map has image in Vg (M), Lemma 3.2.5 says that the
G i-action on V1, (M) is continuous for the topology on V(M) which is induced
from the weak topology on A ®a K|L M. One checks that this topology coincides
with the weak topology and the statement on the elementary divisors as in [Schl7,
Proposition 3.1.13, p. 122-123|. O

Remark 3.7.11.
The above Proposition 3.7.10 says that in order to check the conditions from Remark
3.6.8 it suffices to check that for M € Modé(;?r(AK‘L) it holds:

L. Vg (M) is finitely generated as Op-module.

2. adps s bijective.
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3.8 THE EQUIVALENCE Rep{* (G ) = Mod"' (Ex/;)

In this section, we want to explain, why the categories in question are equivalent if
the corresponding objects are annihilated by 7. This is nearly similar to [Sch17,
Section 3.2, p.123-129| since the hard facts proved there are in such a generality,
that they also cover our situation. Nevertheless, we will write down the statements

in the relative situation, we have chosen.

Remark 3.8.1.

If M € Modé;’F(AKM) is annihilated by 7, then M 1is clearly a finite dimensional
E | -vector space and its weak topology coincides with the natural topology as Eg|r-
vector space. We denote the corresponding category by Modf"ot’F(EKw). For the
Junctor Vi, we then obtain

Fr@pp=1
VK\L(M) = (Efp ®EK\L M) :

Analogous, if V € Repgi)(GK) is annihilated by mp, then V is a finite dimensional
kr-vector space and its Gg-action is continuous for the discrete topology. The
corresponding category will be denoted by Rep,(chg)(GK). For the functor M g, we

then obtain
se H
MK‘L(V) = (ELp Rk, V) 5

Lemma 3.8.2.
Let V € Replgff)(GK) and let vq,...,v; be a kp-basis of V. Then there exists a
normal open subgroup N < G such that o(v;) = v; for allo € N and 1 <i < k.

Proof.
For 1 <7<k set
N; =ker(Gg =V, 0 o(v;) —v;).

Since the G'g-action on V is continuous and V' carries the discrete topology, each N;

is open and normal in Gg. Then take N := N;V; O

The following Proposition 3.8.3 is exactly [Sch17, Proposition 3.2.1, p. 123-124],

where the above Lemma 3.8.2 explains one small step in detail.

Proposition 3.8.3.
Let V € Repy? (Gx). Then it holds:

1. The EF-vector space EYY @y, V has a basis consisting of elements, which are
fized by Hy .



80 3.8. THE EQUIVALENCE Repl? (G) = Mod® [ (E;)

2. Mg (V) is a finitely generated E gy -vector space.

3. ady s bijective.

Proof.
Although this is, as stated before, exactly [Sch17, Proposition 3.2.1, p. 123-124|, we
want to state the (very short) proves of 2. and 3. For this, let v1,...,v; be an

E}P-basis of E” @, V which is fixed by H.

2. Mg (V) = (B @y, V)%
= (E?epv + - Efp'l}k)HK
ES°P Hg sep\ Hi
( ) v1+~-+(EL) Ve

EK|L’U1+ +EK|ka-

- 1 -
3. EY ®p,, MgL(V) = Ef’ ®p,, (EMU1 +o A+ Egpon)
=E; v+ +E Py
= ESLep Rk, V.

Proposition 3.8.4.
Let M € MOdf};t,r(EK\L)- Then V(M) is a finite dimensional kr,-vector space and
adys s bijective.

Proof.
This is [Sch17, Proposition 3.2.4, p.126-128] with F' = E*, W = E}"? @By, M and
f=Fr®oer. 0

Theorem 3.8.5.
The categories Rep](C )(GK) and MOdEZF(EML) are equivalent. The equivalence is

given by the quasi invers functors
M : Rep{® (Gx) — Mod® (E/1)
Vi (B @y, V)<

and

Vi Mod$'r(Eg 1) Rep(fg)(GK)

. Fr@pa=1
yp—



CHAPTER 3. LUBIN-TATE (¢, I')-MODULES 81

Proof.
This is [Sch17, Corollary 3.2.3, p.126], [Sch17, Corollary 3.2.6, p.129| and [Sch17,
Corollary 3.2.7, p. 129]. For the completeness of this section, we want to calculate

the quasi inversion of Mgz, and Vg r.
Let M € Mod% (Ef/z). Then:

Mgt (Vii(M)) = (ET® @, VKIL(M))HK

adM . HK
o (Ezep ®Ek|L M)
= (ESLep)HK ®EK|L M
= EK\L ®EK\L M = M.
Let V € Rep,(ng)(GK). Then:
Fr@ent e, (1 =1

ViiMg(V)) = (ESLep QgL MK|L(V)>

v

RE

(EsLep ®kL V) Freidy =1

= (ESLep)Fr:1 R, V
=k ®, V=V

3.9 THE EQUIVALENCE Repg“z’)(GK) = Mode(AK‘L)

Since the new key inputs in [Sch17, section 3.3, p. 129-135] (namely [Sch17, Remark
3.3.1, p. 129] and [Sch17, Remark 3.3.5, p. 133|) are formulated in a generality in which
also our situation fits, the proof of the general equivalence is completely analogous to

[Sch17, section 3.3, p.129-135|. Therefore, we only want to state it here.

Theorem 3.9.1.
The categories Repgi)(GK) and Modijp(AKw) are equivalent to each other. The

equivalence is given by the quasi invers functors

f; é
Mgir: Repéf)(GK) —— Mod{'r(AkL)

Vi (A®y, V)x
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and

Vkir: MOdir(AmL) Repgf) (Gk)

Frepy=1
M (Awn g, M)



CHAPTER 4

[TWASAWA COHOMOLOGY AND AN
EXPLICIT RECIPROCITY LAW

In this chapter we will generalize [SV15, Theorem 6.2, p. 32| to finite, unramified
extensions. So, we keep the notations from the previous chapters but we assume
additionally that K|L is an unramified extension and let dg;, = [K : L] denote
the degree of the extension. This assumption leads to some simplifications of the

involved structures, which we will discuss before we turn to the results of [SV15].

4.1 COLEMAN POWER SERIES

Now we head towards [SV15|. First we want to recall some notations from there. For
this, we are very close to [SV15, Notation, p. 3| and we keep most of the notations
from there to avoid confusion and to simplify comparisons. As at their beginning, we
make use of [Col79] and therefore work first with power series rings, rings of formal
Laurent series and completions of these rings. Due to Lemma 3.4.3 it makes sense
to work with the same coordinate over both, L and K which we will denote by Z
as in [SV15, p.3]. Recall from Chapter 3 that we fixed a Lubin-Tate power series
¢ € Op[Z] and an associated Lubin-Tate formal group G, € Or[X,Y]. Asin [SV15,
p. 3] we write X +g, Y instead of G4(X,Y). In our opinion, this leads to a clearer

presentation.

Remark 4.1.1.
0(94(X,Y

Since Gy = X +Y mod deg 2, the power series =55~ has no constant

)
’(X,Y):(O,Z)
term and therefore has an inverse in OL[Z].
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Definition 4.1.2.

Let gir € O1[Z] denote the inverse of 0(5s(X.Y)

873/)}()(,5/):(072) (Cf- Remark 4.1.1)_
Let furthermore logy(Z) = Z + --- € L[Z] denote the unique formal power series

whose formal derivative is grp.

Remark 4.1.3.
gur(Z)dZ is the unique invariant differential form on Gg.
logir is the logarithm of Gy . In particular, we have gir(Z)dZ = dlogir(Z).

Proof.
The first statement is [Haz78, §5.8], the second [Lan78, p. 8.6]. O

Definition 4.1.4.
By Oinv we denote the invariant derivation corresponding to d logyr, i.e. for f € Op[Z]

we have
df = ainv(f)dlogLT .
Remark 4.1.5.
For f € OL[Z] we have
f/
8inv - .
(f) o

Proof.
We have (cf. [SV15, p.3])

fldZ =df = Oy (f)dlogrr = Oiny(f)grrdZ
which immediately implies the claim. O

Remark 4.1.6.
Omv clearly is Op-linear and therefore it is continuous for the wr-adic topology on

0L[Z].

Remark 4.1.7.
By the same formula as above (cf. Remark 4.1.5), we expand Oy to Ox[Z], i.e. if
f € Ok[Z] we set
f/
Oy =
) gLt

Then clearly Oy is O -linear and therefore it is continuous for the wr-adic topology
on Ok [Z].
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Remark 4.1.8.
For a € O, we have
logir([a](2)) = a - logr(2)
a-gur(Z) = gur([al(2)) - [a) (Z).
Proof.
This is [Lan78, 8.6, Lemma 2|. O

As before (cf. Definition 3.4.5), if ¢ is an Op-linear endomorphism of Ok and
f(Z) € Ok[Z] we denote by f?(Z) the power series, on which 1 is applied to its
coefficients, i.e. if f(Z) = a;Z" then

F(2)="7 da)z"
i€Ng
Recall that on Or[Z] we have the Frobenius endomorphism (cf. [SV15, p. 3], [Col79,
p. 97|, or here)

er: OL[Z] = OL[Z], f(Z) = f(rL]e(Z)).

Together with Lemma 3.4.4 the corresponding Frobenius endomorphism on Ox[Z]

then is
kLt Ok[Z] — Ok[Z], f(Z)— foEIE([rL]p(2)).

Remark 4.1.9.
This endomorphism ¢, on Ok[Z] is a bit different to the one in [Col79, p. 97|
although Coleman also works with a finite unramified extension over his fixed base
field (in contrast to [SV15, p.3|). The reason of this difference is, that the above
endomorphism translates to the endomorphism on the coefficient ring of Lubin-Tate
(¢x|L; Tk )-modules (cf. Lemma 3.4.4) in which we are interested later on. We now
have to check, that the results of |Col79| translates to our situation.
We will also make use of the endomorphism defined by Coleman and in order to
keep the notation from [SV15|, we will denote by ¢, the following endomorphism of
Ox[Z]:

o1 Ok1Z] > OklZ], £(Z) > F(lrls(2)).

Note that at [SV15, p. 3| ¢r, is defined on Or[Z], but |Col79, p.97| defines it in this
way. So, our ¢, induces the o of |SV15| by restriction.

We now want to characterize the image of ¢ 1. First, we recall the description of

the image of ¢r,.
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Lemma 4.1.10.

It is
im(pr) = {f € Ox[Z]| f(Z) = f(a+g, Z) for all a € Gy[rL]}.
Proof.
See [Col79, Lemma 3, p. 97]. O

Remark 4.1.11.
Let ¥ € Gal(K|L) and f € Ok[Z]
1. Because [11]¢(Z) € OL[Z] we have [11]4(Z) = [WL]Z(Z) and therefore

(f7 o lm1]e)(Z) = (f7 o [rLlg)(Z) = (f o [nLls)’(2).

2. With this, we accomplish cpK|L(fﬂ) = (¢K|L(f))ﬂ, since

o (') = (F2)7K1(Ine)e(2)) = (F7519)  ([mLls(2))
= (f7<11([m2]e(2))” = (rip(f),

where the second equality holds, because ¥ and ok |y, are elements of Gal(K|L),

which is cyclic.

Corollary 4.1.12.

In particular, we have
YPK|IL —OK|L°¥YL = ¥PLCOK|L-

Proof.
This is exactly the first statement of Remark 4.1.11. O

Proposition 4.1.13.
We have

im(ppL) = {f € Ox[Z]| f(Z) = fla+g, Z) for all a € Gy[mL]}.

Proof.

Since oz, is an isomorphism on O and therefore also on Ox[Z] and because of

YPK|L = OK|L° YL

(cf. Corollary 4.1.12) this is an immediate consequence of Lemma 4.1.10. O
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Coleman then continues in [Col79, Thm. 4, Cor. 5, p. 98|, to prove the existence of
a unique Or-linear endomorphism ¥ce: Ox[Z] — Ok [Z] such that for f € Ox[Z]

(90[/ o wCol)(f(Z)) = Z fla 19, Z)

CL€9¢[7TL}

and in [Col79, Thm. 11, p.102] of a wunique multiplicative map
N: Ox[Z] = Ok[Z] such that for f € Ox[Z]

(proN)(f(2) = [[ fla+s, 2).

a€Gy[mr]

The map N is called norm operator.

Remark 4.1.14.
For all f € Og[Z] and ¥ € Gal(K|L) we have

1. Yca(f2(2)) = (ealf))?(2).
2. N(f%(2)) = N()?(2).

Proof.
Because ¢y, is injective, it suffices the check the equations after applying ¢y .

L (erovea)(f'(2) = Y. (F)a+s, 2)

a€9¢[7TL]

= Y (Na+g, 2)

a€Gylmrr]

= Z f(a+9¢Z)

a€Gy[mr]
— 9
= ((provca)(N) (2)
= or(Wca(f)")(2).
The third equality holds true since G4 has coefficients in Op.
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2. (proN)(f'(2) = [ (F)a+g,2)

a€Gglmr]

= I "a+s,2)

(Z€9¢[7TL]

[V,
( H f(a+9¢Z))

a€Gylmr]
~ 9
= ((eroM)() " (2)
= oL (N(H))(2).

As above, the third equality holds true since G4 has coefficients in Oy,.

Remark 4.1.15.
Let f € Ok[Z]. Then we have

(SOK\LOJC;)(J"(Z)): Z [ (a+g, Z)

(l€9¢[7rL}

and

(¢K\L°N)(f(z)): H foKIE(a +g, Z).

CLES¢[7TL]

In order to imitate the formulae from [Col79, Theorem 4, p. 98] and [Col79, Theorem
11, p. 102] we make the following definitions.

Definition 4.1.16.

. -1 0 -1
Yol = 0 g, © Yol = Yol © O s

. —1 Nf N —1
N = O'K‘LON—NOO'K‘L.

Note that the second equality at both lines comes from Remark 4.1.14

Remark 4.1.17.
Let f € Ok[Z]. Then we have

(90K\L o wCOI)(f(Z» = Z f(a +9¢ Z)

a€9¢[7TL}

and

(eriL o N)(f(2)) = H fla+g, Z).

a€Gg[mrr]
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Remark 4.1.18.
L. Yool © Yr|L = qL-
2. Yeol([mLle - f) = Zcol(f) for any f € Ok[Z].
3. N([mr]g) = 2.

Proof.
Because |, is injective, it suffices the check the equations after applying of px |z

L (eriL o ¥co o ki) (f)(Z) = Z (erin(f)) (a+g, 2)

a€Gy[mr]

= > () (mlsla+s, 2))

a€Sp[mr]

= > () ([r)e(2))

a€Gy[mr]
= (gL foxF)
2. (i ovoa) (m)(2) - £(2) = ) [rilslats, 2)f(a+g, 2)
a€fy(mr]

=[mLlo(Z) - Y. fla+ts, Z)

a€Gy[mr]
= or1L(Z) - (e © Yoo (f(2)))
= or|L(Z - Yca(f(Z))).

3. (pripoN) (me)s(2) = ] Imelsla+s, 2)
a€Gylmrr]

= [ [mle(2)

a€9¢[7’l’L]

= [ exi(2

a€Gylmr]
= ok|L(Z7).

Remark 4.1.19.
Recall that [rp)s(Z) € ZOL[Z]. Therefore, for any f € Ox[Z][Z71] we can find an
n(f) € Ny, such that [ﬂ'L]Z(f) - f € Og[Z]. Together with Remark 4.1.18 this allows

us to extend Ycer to an Op-linear endomorphism

Ycol: Ok((Z2)) — Ok((2))
fr— 27" Dypeq([r]sY 1)
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as well as to extend N to a multiplicative map

N: Og((2)) — Ok ((2))
fr—s Z_an(f)N([TrL]Z(f) ).

Proof.

Let f € Og((Z)). We want to give an argument that the above definition is
independent from the choice of n(f) as long as we have [WL]Z(f) - f € Ok[Z]. So, let
n,m € No with n > m such that [r.| - f € Ox[Z]. Then Remark 4.1.18, 2. implies

Z_n¢col([ﬂL]g : f) = Z_anol([ﬂ—L]g_m ’ ([WL]ZL ) f))
=Z7"Z"""YcallrLly - f)
= Z""Ycol([rLly - f)-

This is the well definition of ¥go. For N, Remark 4.1.18, 3. implies

2N ([ ]l - f) = 27N (g 5N - f)
= Z7uwnZwIN([rp )7 f)
= 2N ([ - f).

Now fix an Or-generator tg = (ton)n of TGg.

Theorem 4.1.20 (Coleman).

For any norm-coherent sequence u = (uy)y € I&an there exists a unique Laurent
series guty € (Ox((2)))N= such that UI_(TL(gu,tO (ton)) = un for anyn > 1. This
defines a multiplicative isomorphism

lim K= (0((2)) )7, 1 — gugo-

)

Proof.

See [Col79, Thm. A, p.92; Corollary 17, p. 105-106]. Note that Coleman uses N and
therefore his condition N = o1, translates into our N = id, since N=oc K|z ©N by
definition. O

Remark 4.1.21.
1. The map (O ((2)))NT9 = kr((2))* given by reduction modulo 7y, is an
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1somorphism. Hence

lim K kg ((2))*, w— gu, mod

18 an isomorphism of groups.

2. Ifti = c-tg is a second Op-generator of TGy, then guy, ([c|(Z)) = gut,(Z) for

any u € lglKTf

Proof.

1. See [Col79, Corollary 18, p.106]. As in Theorem 4.1.20 note, that Coleman

uses if, and therefore his condition N = ok translates into N = id.

2. Let t1 = ¢~ tg be a second Op-generator of TG4 and u € 1&1[(; By definition

we have [c|(tg,n) = t1,, for all n > 1. It follows

Guito(ton) = i (tn) = Guty (t1,n) = Gu,in ([c](Eon))-

So the uniqueness property of Theorem 4.1.20 implies gy ¢ = gu, © [c] as

claimed.

Definition 4.1.22.

As in [SV15, p. 5| we introduce the "logarithmic" homomorphism

ALT: OK[[Z]]X — OK[[ZH
fr—s 8iHV(f) _ —1]”

Its kernel is O

Remark 4.1.23.
Ay is in fact a homomorphism. Let f,g € O [Z]*. Then

-1 (fg)/

Aur(f-9) =915 - = QE%M = 971 (f + Z) = Arr(f) + Arr(g).

fg f

Lemma 4.1.24.
On Ok[Z] we have the following identities:
L. Apr ok = Tr9k|L © Avr.
2. Yoo o Apr = T Apr o N.
3. Apr(foxIL) = (Apr(f))7KIE for all f € Ok [Z]%.

Fo e

O
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Proof.

1. That o is an isomorphism of O which fixes Or, implies |1 (g9rT) = ¢L(g9LT) and
(foxIL) = (f")?. Thereby the proof of of this statement is similar to the one of
[SV15, Lemma 2.4, p. 5].

2. (pkipotcoro dur) () = Y. (Bur())a+s, 2)

a€Gy[rL]

1 flla+s, Z)
Z gur(a+g, Z) fla+g, 2)

a€Gy[mr]

Z 1 %f(a +9¢> Z) 1

d
a€SGp[rr] gur(a 9 2) fla *9 2) az(a T34 Z)

_ Z 1 d%f(a +9¢ Z)

a€fglmr] % logyr(a +g, Z) fla +9, Z)

= Arr((exiz o N)(f))
= oKL (At o N)(f))
= pk|L(mL(Art o N)(f)).
3. As before, because oy, fixes O, it is gE{f'L = grr and (foKIL) = (f')?. So it

follows

oKL N\NOKI|L ! O'K\L
Apr(f7xir) = gL%(ffny'L) = gLTl(ffo—)KlL = (gml]}) = (Arr ()75,

Remark 4.1.25.

Arr restricts to a homomorphism

)Nzld N OK[[Z]]TZ)COIZWL .

ALTZ (OK[[Z]]X
with kernel the roots of unitypg, —1 of order dividing qrx — 1.

Proof.
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Let f € (OK[[Z]]X)N:M. Then Remark 4.1.24, 2. induces

Yool(Arr(f)) = mLALT(N(f))
= . Arr(f)
= 7m(Acr(f)),

i.e we get Yool = 7 on im(Apr).

Since O [Z] has no zero divisors, it is App(f) = 0 if and only if f/ = 0, i.e. if
and only of f € Og. Therefore, the kernel of the above restriction are exactly these
elements of O, on which N is the identity. So, in the following we compute Ojf\é:id.

Because of the injectivity of pg |, it is
N(z) ==
if and only if
er1L(N(x)) = ¢r|L()
for all z € Oy and because of Remark 4.1.17 it is @, (N(z)) = 29 as TGy[rz] has
qr elements. Since @y, acts on O as ogp, it is N(z) = 2 if and only if

O'K‘L((IZ) = qu.

Furthermore, since K|L is unramified of degree dg|r,, the Galois automorphism o,
d . .
has degree d |1, and therefore we have O—KIT[‘/L = idg. Thus, by dg-times multiplying

ok|(z), the last equation implies
dK|L
dK'L(x) — g\ = g%,

=0y

In fact, since oz, sends a (g — 1)-st root of unity to its ¢z-th power, the above
equation is equivalent to oz (7) = 292, So, in conclusion, we have seen, that for
z € OF we have N(z) = x if and only if z is a gx — 1-st root of unity, which ends
the proof. O

Clearly by definition, Ay extends to the homomorphism

Arr: 0k ((2))* — 0k((2))
fo D) T
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It’s kernel is O again.

Lemma 4.1.26.
The identity col © Arr = A o N holds true on Ok ((Z))*.

Proof.
The proof is similar to the one of [SV15, Lemma 2.5, p.6-7| by replacing ¢, with
PK|L- O

Remark 4.1.27.
As before (cf. Remark 4.1.25), Ay restricts to a homomorphism

N=id

Arr: (00((2))%)" 7 — 0L((2))Yer=me

with the same kernel pig. 1.

4.2 DIFFERENTIAL FORMS AND RESIDUE PAIRINGS

As mentioned at the beginning of Section 4.1, due to Lemma 3.4.3, it makes sense
to work with the same variable over both, L and K. In order to still simplify
comparisons, we will continue working with the variable Z. Therefore, let now <77,
be the completion of O1[Z][Z 1] with respect to its 7 -adic topology (in Chapter
3 we used the variable X) and let similarly @, be the completion of Ox[Z][Z ]
with respect to its mp-adic topology. Let &1, and Py, be their respective fraction
fields. From the construction in Chapter 3 we then can deduce that @/, identifies
with Agr, as well as #, with By, and Py, with B . We will also denote the
Frobenii on %y, and By, with ¢ and ¢, respectively.

Remark 4.2.1.
Since Oy 1s continuous (cf. Remark 4.1.7), it extends to a homomorphism of Br|L
and for f € By, we still have
f/
g’

ainv(f)

Recall from Corollary 3.5.3 that @/, is free of degree qr, as w1, (#k|r,)-module
with basis (1, Z,...,Z9.71) and that trace maps of totally ramified extensions are

zero in the residue class field.
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Definition 4.2.2.
Let Tr denote the trace map of the finite extension By ||k r(#Kk ). Then define

1 1
= —p, Tr.
wK|L 7_‘_LQDK|LO r

Remark 4.2.3.
For all f,g € B, we have

Vi iL(er|L(f)g) = fYxn(9)-

and we have

4qrL .
VKL © YKL = —id.
TL

Proof.
Since ¢, is injective it is enough to prove the assertions after applying g r. Let
f,g S '@K\L Then

or1L Wk iL(erL(f)g) = 7T1LTY(90K|L(f)9)

= SOK|L(f)ﬂ_1LTr(9)

= or1L(Nex|L (YK L(9))
= orL([YKL(9))-

For the other equality, we compute

oLk L(erL(f))) = iTl"(80K|L(f))

T
— ;me(f)Tr(l)

= qu@mL(f)‘

TL

Definition 4.2.4.

Let Nor denote the norm map of the extension B r|¢k|r($K|r). Then define
Norgp, = ¢;<1\L o Nor.

Remark 4.2.5.
The restrictions of Vg1, and Ng |1, to %1, are denoted by 11, and Ny, respectively.
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These then are exactly the maps from |SV15, p. 8|.

We then have the same remark as in [SV15, Remark 3.2, p.8-9|. In the proof one
just has to do the following adaptions:
Replace @1, Y1, Yo and N, by @1, Y1, our definition of 1)co and N, respectively.

Sometimes there is also a o7, involved.
Remark 4.2.6.

L Yrn(Pkin) © i and Ny (kL) € Yk
On Ok [Z] we have Vg, = Wzlwcol and Ny, = N.
On B |1, we have o1, © V|1, © Oiny = Oinv © VK |1 © VK |L-
NK|L(f)([C]¢Z) = NK|L(f([C]¢>Z)) Jor any c € OE and f € %K|L~
NgL(f) = f mod ey, for any f € k.

If f € g satisfies f = 1modny' g, for some m > 1 then
NKlL(f) =1 mod TFZn+1JZ{K|L.

7. (Ox((2)) P = (a7, =,

SO ST o O

Corollary 4.2.7.
With the above Remark 4.2.6, 7. the isomorphism of Theorem 4.1.20 becomes

lim K = (o)

K|L :

Definition 4.2.8.
Let Q-}?f%\L = Wk dZ be the differential forms , which are free and of rank one

over @ . Let furthermore

Res: Q}a{KIL — OK, (Z CMZZ) dZ — a_4

)

be the residue homomorphism.

Remark 4.2.9.

The homomorphism Res is continuous for the weak topology on

<§Z{K|L :
Proof.

The preimage of 77'Of contains Ox[Z] and 77" @k, and therefore in particular

X"MOg[Z] + 7" o1, Note that A}

K|z, corresponds to Ox[Z]. O

Remark 4.2.10.

The homomorphism Res does not depend on the choice of the variable.
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Proof.
This is [SV15, Remark 3.4, p. 10-11]. O

The following Remark explains how the Frobenius from K|L interacts with the
residue homomorphism. It’s not spectacular, but it leads later on to some changes in

the equations we deduce in the same way as [SV15, p. 16-18].

Remark 4.2.11.
For f € oy, we have

Res(f7%1F) = og 1 (Res(f)).
Definition 4.2.12.
We define the residue pairing by

k|1, X Q}?{K‘L — Ok, (f,w)+— Res(fw).

Remark 4.2.13.

The residue pairing is jointly continuous.

Remark 4.2.14.

The above residue pairing from Definition 4.2.12 induces for every m > 1 a pairing
Dk \L /T | L X Qi{K\L/ﬂ-ZnQi{K\L — K/Og, (f,w)+— 7;"Res(fw) mod Og.

This again is continuous.

Definition 4.2.15.
In the following, we will denote by Hom®* the set of continuous homomorphisms

between two objects.

Remark 4.2.16.
Asin [SV15, (14), p. 11| the above Remark 4.2.14 together with [Bou07, X.28, Theorem

3] induces a continuous homomorphism of Ok -modules

Ql

wKIL/WTQ}szIL —— Hom@® (1, /77 |1, K/Ok),

wr———[f = 7, "Res(fw) mod Ok].
In particular, this is an isomorphism of topological O g -modules.

Proof.
This is similar to [SV15, Lemma 3.5, p. 11| O
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Lemma 4.2.17.
Let M be a finitely generated <y /n] | -module. Then we have a topological

isomorphism

Hom,, , (M, Q}Q{KlL /WTQ}Q{KM) Hom? (M, K /Ok)
Fi 7, " Res(F(.)) mod O.

Proof.
The proof is similar the one of [SV15, Lemma 3.6, p. 11-12]. O

Remark 4.2.18.
Since o1, and A\, are naturally isomorphic (by sending the variable Z to wg), we
have the language of ((pK|L, ['k)-modules and all its results also over ok r,. We will

make use of it in the following.

Definition 4.2.19.
Let M € Modzr(dK| ). We define the Og-linear endomorphism vy, of M by

(Lpli}l —1
¢M: MLMIQL §0K|L®%K|LM%M

[ @m————9g(f)m.

Remark 4.2.20.
Let M € Modgﬁ,F(v@wa). Then the endomorphism as is continuous for the weak
topology and it satisfies the following formulas

Y (prip(f)m) = fiou(m)
Y (f(om(m)) = ¢K|L(f)m

qL. .
Yy opnm = — -idy,
T

with f € x|, and m € M.

Proof.
That s satisfies the formulas follows immediately from the analogous formulas for
VYL and g g, (cf. Remark 4.2.3). The latter formula together with the fact that

@ is open with respect to the weak topology, implies that 1, is continuous. O

We now skip some technical details (cf. [SV15, p.12-.14]), which won’t appear
again, but they play an important role in the proof of the next Lemma. Since the

proof in our case is literally the same, we also skip it here. But since this result is
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used later (cf. [SV15, Theorem 5.13, p.30-31]) we wanted to list it here and say that

it is still true.

Lemma 4.2.21.
Let M € Modg,F(delL) sucht that "M = 0 for some m € N. Then ¢y —id is a

continuous and topologically strict endomorphism of M.

As in [SV15, p.14-15] our next aim is to see that Modg’r(dKlL) has an in-
ternal Hom-functor, i.e. that for any M, N € Modgir(;szw) the @ r-module
Homszme(Mv N) is also an étale (¢ |z, 'k )-module over @r. For this, we list the

results from loc. cit., which are proved similar in our case and add some computations.

Lemma 4.2.22.
Let M, N be two finitely generated @y;-modules. Then we have:
1. The weak topology on Homp{K‘L(M,N) coincides with the topology of pointwise

convergence.

2. The bilinear map
HOH’IJMK'L(M,N) x M — N, (a,m) — a(m)

18 continuous for the weak topology on all three terms.

Proof.
The proof is similar to the one of [SV15, Remark 3.13, p. 14-15] O

Proposition 4.2.23.
Let M,N € MOdiF(%KIL). Then Homy, ., (M, N) is also an etale (ok 1, T'k)-
module over @y, with respect to

y(a)=vyoaoy™

lin lin

-1
@HomﬂK‘L(M,N)(Oé) =N O (idﬂ{K\L & a) o ((pM>
forany vy €Tk and o € HomMKlL(M, N).

Proof.
We have to prove the following claims.

1. The I'k-action commutes with Ypom wtgeyp (MN)-
2. The I'kg-action is continuous for the weak topology.

3. Homg, , (M, N) is etale.
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The proofs of 2 and 3 are similar to the argumentation after [SV15, Remark 3.13,
p.15]. So 1. remains.
1. Let y € 'k and a € HodelL(M, N). Because ¢ and ¢ commute with the

action of I'ir we have
At oy =70 h
as well as the same formulas for N. So we have

V(PHom.y , (1.8)(@) = 7 © (Phom (1. (@)) 077

. N —1
=70 <gpk}l o (idﬁme ® a) o (@ﬁ?) > 07—1
lin . -1 lin)
= (@N 07) ° (ld,oleL ® a) ol o (soM)
lin . -1 lin) !
=¢@N © (70 (ldﬁleL ®a) o7y ) o (wM)
lin : -1 lin) ~t
=¢N'© (ldwK‘L ® (yoaoy )) o (sOM)

= @HodelL(M,N) (v()).

Remark 4.2.24.
Let M,N € Modi’ip(f;z/m,:). Then the equality

PHom.,. , (,N) (@) (Par(m)) = o (a(m))
holds true for all oo € Homy, ., (M, N) and m € M.

Proof.
Let o € HomﬂK‘L(M, N) and m € M. Then

i, 1@ a1 (m) = (8 0 (g, @ ) o () ) Cortm)

= ol (120, 0 ) (o) (ra@m))
— (i o)1 & m)

~ oy @ am)

~ o (a(m)).



CHAPTER 4. IWASAWA COHOMOLOGY AND AN EXPLICIT RECIPROCITY LAW
101

Proposition 4.2.25.
On the oy 1,-module Qi{K\L is via

v-dZ = xur(v)]'(2)dZ
o1 (dZ) =7 r) (2)dZ

a (¢k|n, I'i)-module structure defined.

Proof.

First note that [71]4(Z) = 7 Z + Z9 mod 7, and therefore [r.])(Z) is divisible by
7y, since qr, is divisible by 7. Because I'x and ¢q1 operate by multiplication, these
operations are continuous. The endomorphism ¢qg1 is @z -linear by definition. We

have

©o1 (7(dZ)) = par([xer(v)](2)dZ)

= ok (Ixer(V](2))pa1(dZ)
=g e () ((7L)(2)) L) (Z)dZ
= (e ()] o [71))dZ
= (e () - 7r))'dZ
=7y, ([rr - xur(7)))'dZ
= ([rz] o [xur(7)])'dZ

(Z

:Wzl[WL]/([XLT( N(2) ar (1)) (2)dz
Y ) (2)d(2))
= V(a1 (dZ)).

So the operations of 'y and @1 commute and therefore Q}Z{K‘L is a (¢rL, Tk )-
module. O

Definition 4.2.26.
Let x: ' — OF be a continuous character, W, = Opt, its representation module
and M € Modi,t’lﬂ(,gz{Kw). The y-twisted module of M is defined by

M(x) =M ®o, Wy.
The | -module structure is given by

a-(mew)=(am)®w.
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Proposition 4.2.27.

Let x: T — OF be a continuous character, Wy, = Opt, its representation module,
M e Modfﬁr(b@fK‘L) and M(x) the x-twisted module of M. Then on M(x) we can
define operations of vk, and I'x by

Pr() (MmO w) = pp(m) @ w,

w):
w):

7 (m@w) = x()((y-m) ®w).

Then it is M(x) € Modir(ﬁfKM) and Yar (m @ w) = Py (m) @ w.

Proof.

The operation of ' on M () is continuous because x is continuous and the operation
of I'x on M is continuous as well. The operation of I'x commutes with ¢y
because the actions of I'x- and ¢y commute and ¢y is ¢ r-linear, especially is

en(am) = appr(m) for all a € Op and m € M. It remains to show that the map

Sogjll(x): JZ’7K\L Ot L0k L M(x) = M(x), fomOw— f® SOM(X)(WL @ w)

is bijective. This follows immediately from the assumption that goﬁ}} is bijective,

M(x) =M ® W, and

‘P%\?(X)(f@’m@w) = [ ®oup)(mew)
=f®pu(m)@w
= o (f @m) ®w,

i.e. the inverse map of gp%‘(x) is the map

Remark 4.2.28.
For the character xyr we take Wy, =T = Oty as representation module and for

XI?% we take its dual, i.e. WXETI =T* = Ort; where t() is the dual basis of to.

Proposition 4.2.29.
The map

e L(xur) — Q,lng‘L; f @ty fgurdZ
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is an isomorphism of (pk|r, 'k )-modules. Therefore QL is an etale (er2: Tk )-

\
module.

Proof.
In this proof we will call the map under consideration a. It is well defined and bijective
since grr is a unit in Oz [Z]. So we have to show that « respects the operations of

Ik and g . Let f € o, then we have

Lo ) ([ (Z) @ 10)) = alekL(f(Z)) @ to)
= a(f7RIE([rL)(Z)) @ to)
= fo([r)(Z)) g1 (Z)dZ
= fr1([x)(2))7y,  mLgur (Z2)dZ
= 71 ([x)(2) g ([wL)(2)) L) (Z)r tdZ
= ¢K|L(f(Z))¢K|L(9LT(Z))<PQl (dZ)
= a1 (f(Z2)g1r(Z)dZ)
= po1(a(f(Z2) ® o))

/—\/—\

Let additionally v € I'x, then

a(y- (f(Z) ®t)) = al(xer (V)7 - f(Z)) @ o)
= xrr(V)(v - f(Z))gLr(Z2)dZ

= (v £(Z2))gur(xer(MI2) xer (V)] (Z2)dZ
= (- f(2)(v-gur(2))(y-d2)
v - (f(Z2)gLr(Z)dZ)

=7-0<(f(Z)®to)-

So «a respects the given ¢ - and I'k-structures. According to Definition and
Proposition 4.2.26 we have </ (xLr) € MOdiF(dKlL) and so we also have Q}Qme €
MOdeJ’F ('QfK|L) O

Remark 4.2.30.
The above proof showed also that gy (Z)dZ is pqi-invariant, i.e. it is

w1 (grr(2)dZ) = gir(Z)dZ.

And because of grr(Z)dZ = dlogyr is dlogpr also g1 -invariant.
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We still follow [SV15, p. 16-18] and as it is done there, we want to deduce some

rules for the computation of the residue pairing, we introduced in Definition 4.2.12.

Remark 4.2.31.
For 4 € (Oxg((2)))N= the differential form %ﬁ is Y1 -invariant. Let us first

compute

N )

iz

u u
= Apr(a)grrdZ
= Apr(a)dlogyp

With this we get

da
har <5> = Y1 (Apr(a)dlogyr)

FE pon (A (@) por (dlogyr))
= gL (Apr(@))dlogyy
= mp, ool (Arr(@))d logpy
FE0 Apr(N(@))d logy

= ALT( )legLT
B da
a

Lemma 4.2.32.

The map d: S|, — Q}Z{K‘L satisfies
L 7mp-porod=dogg|.
2. yod=dow for any v € I'k.

3. mp - Yo Od:dO@ZJK|L.

Proof.
This is [SV15, Lemma 3.16, p.16]. We add some details and transfer it to our
situation.

1. Let f S 'Q{K|L Then:

o1 (df) = pa1(f'dZ) = ok (f)ea (dZ)
= (7] (2))wp  [wr) (2)dZ
=7, d(f7RIE([rL)(2))) = 7 d(ek L (f(2)))



CHAPTER 4. IWASAWA COHOMOLOGY AND AN EXPLICIT RECIPROCITY LAW
105

2. Let f € Q{K|L Then:

v df =(f'dZ) = (v- f)(7-dZ)
= [ (bar(M(2) e () (2)dZ
= d(f(Dar(](2))) = d(y - f)

3. Since @1 is injective the identity in question is equivalent to

po1 oPgrod =dopg otk

by the first part of this proof. From Proposition 4.2.29 we deduce

(pa1 0 o1)(forrdZ) = (SOK\L oYk )(f)gurdZ

for all f € o1, since x| (xur) and Q}QfML are isomorphic as (¢ |z, 'x)-
modules and therefore | and Q}%K\L are isomorphic as @g|r-modules

equipped with an étale endomorphism @ |z, resp. po1. Let f € @ . Then:

(par 0 o1 )(df) = (par © Y1) (Omy(f)grrdZ)
= ((¢x|z © ¥r|L) (Oinv (f)))grrdZ

1203 Oy (P © YL (f))gLrdZ

“LY d(orn 0 UL (f)).

O

In the following Proposition Remark 4.2.11 leads to some changes to the corre-

sponding formulas of [SV15, Proposition 3.17, p. 16].

Proposition 4.2.33.
The residue map Res: Q}Q{Kw — K (c.f. Definition 4.2.8) satisfies the following

equalities:
1. Resopg = WzquUK|L o Res.
2. Resoy = Res for all v € 'k
3. Reso g1 = U[_(‘ILRGS.

Proof.
The proof is similar to the proof of [SV15, Proposition 3.17, p. 16]. In the reduction



106 4.2. DIFFERENTIAL FORMS AND RESIDUE PAIRINGS

step, explained before starting proving the results, one has to recall that pq1 acts as

ok, on the coefficients, which leads exactly to the above formulas. O
Corollary 4.2.34.

The residue pairing satisfies

Res(f¢q1(w)) = U;<|1LRGS(<PK|L(f)W)
Jor all f € @y and w € 0l

JZfK‘L :

Proof.

The proof is similar to the proof of [SV15, Corollary 3.18, p.17]. We do it here,
because we have some slightly different formulas. From the projection formula in
Remark 4.2.20 we get that the left hand side is equal to

Res(¥o1 (9L (f)w)-

The above Lemma 4.2.33 then says

Res(Ya1 (pk L (f)w) = U;_(|1LRGS(<PK|L(f)W)~

Proposition 4.2.35.
Let M € Modir(%K‘L) such that mp M = 0 fur some n > 1. Then the pairing

[]="[]m: M x Homg, , (M, Q}JK\L/WZQ}MK\L) K/Ok,
(m, F) 77 "Res(F(m)) mod Ok

satisfies the following properties.
1. The pairing [, s is jointly continuous.
2. The pairing [, |ar is Tk -invariant.

3. Under the pairing [,]n the operator iy is left adjoint to pygy, (MQL,  /znQl
KLV 7 g

i.e. for allm e M and F' € Hom, (M, ol /WQQ}Q%K‘L) there holds

!Z/KlL

[ar(m), Flar = [m, SOHomWK‘L(M,Q}Z{K‘L/ngQ;{KIL)(F)]M.

Q)
L et

)’
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4. Under the pairing [, |amr the operator @y is left adjoint to Py, LMQL,
K|L ’

YK|L ﬂLQLfIqL))
i.e. for allm e M and I € Hom, (M, Q}?{K‘L/WQQ}Z{K‘L) there holds

et ().

[ere(m), Fla = [m,?ﬂHode‘L(M,Q %,

}Q¢K|L
Proof.

The proof is similar to the argumentation between [SV15, Corollary 3.18, p. 17| and
[SV15, Proposition 3.19, p. 17| and the proof of [SV15, Proposition 3.19, p. 17-18].
Note that their (17) is proven here (c.f. Remark 4.2.24). O

Remark 4.2.36.
Let M € Modir(ﬂwa) such that T} M = 0 fur some n > 1. Then the pairing

[7> = [7 >M: M x HomeL(Mv %K\L(XLT)/WZJZ{KM(XLT)) K/oKv
(m, F) 7, "Res(F(m)grrdZ) mod O
satisfies analogous properties to the ones of Proposition 4.2.35.
Proof.
This follows with Proposition 4.2.29 from Proposition 4.2.35. O

Since we mentioned in Remark 4.2.18 that the language of (¢k/r, T’ K )-modules
translates from A/ to @k |;, and we explained the theory in detail over Ay, we
will skip [SV15, Section 4, p.18-23] in our discussion, since there is nothing new
to discover. The only thing we want to mention is that the above Remark 4.2.36

translates into to language of A r. For further applications, we will state it here.
Remark 4.2.37.

Let M € MOdg:,r(AKw) such that T} M =0 fur some n > 1. Then the pairing

[7> = [7 >M: M x HomAK\L(Mv AK\L(XLT)/WZAKM(XLT)) K/OK7
(m, F)t 7 "Res(F(m)grrdZ) mod Ok

satisfies analogous properties to the ones of Proposition 4.2.35.

4.3 LOCAL TATE DUALITY AND IWASAWA COHOMOLOGY

This section is nearly exactly [SV15, Section 5, p.23-31|. Just for completeness we
want to list the results, which we will need later on. Note that [SV15, Remark 5.1,

p. 23] was also proven here (cf. Lemma 5.1.1).
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Definition 4.3.1.
Let M be a topological Op-module. The Pontrjagin dual of M is defined as

MY := Hom{*(M,L/Oy).

It is always equipped with the compact-open topology.
Note that as in [SV15, Lemma 5.3, p. 24-25| we can prove for topological O g-modules:

MY = Hom§? (M, K/Ok).

Proposition 4.3.2 (Pontrjagin duality).
The functor —V defines an involuntary contravariant autoequivalence of the category
of (Hausdorff) locally compact linear-topological Or-modules.

In particular, for such a module M there is a canonical isomorphism

M =5 (MY)V.
Proof.
This is [SV15, Proposition 5.4, p. 25-26]. O
Remark 4.3.3.

Let My = M g M be a sequence of locally compact linear- topological O -modules
such that im(«) = ker(B) and 8 is topologically strict with closed image. Than the
dual sequence

\% Y
MY 5 MY S My

18 exact as well.

Proof.
The proof is similar to the one of [SV15, Remark5.5, p.27]. O

Remark 4.3.4.
LetV € Repgf)(GK) of finite length and n > 1 sucht that 77V = 0. Then there is a

natural isomorphism of topological groups:
M (V)Y = Mg (VY (xur))-

This isomorphism identifies ¢MK‘L(VV(XLT)) with SOJ\\//[mL(V)'

Proof.
This is [SV15, Remark 5.6, p. 27| O
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Proposition 4.3.5 (Local Tate duality).
Let V € Repgf)(GK), n > 1 such that m}V = 0 and E a finite extension of K.
Then the cup product and the local invariant map induce perfect pairings of finite

Or-modules
Hi(GEv V) x H27i(GE,HomZp(V, @p/Zp(l))) — HQ(GE7QP/ZP(1)) = Qp/zp

and
H (G, V) x H*(Gg,Homy, (V,L/01(1))) = H*(Gg,L/O(1)) = L/O.

There —(1) denotes the twist by the cyclotomic character.

This means that there are conical isomorphisms
Hl(GEa V) = Hg_l(Ka V\/<1))V

Proof.

This is [SV15, Proposition 5.7, p. 27-28|, where [Ser73, Theorem 2, p. 91-92]| is applied.
Because the latter is slightly different formulated, we want to check it’s compatibility
here:

Serre defines the dual as HomCZtPS(V, 1), where p is the union of all roots of unity. The
condition 77V = 0 implies that V' is also killed by a power of p. This means, that the
image of each homomorphism V' — 1 is contained in the set j, of p-power roots of
unity. As Abelian Group p, is isomorphic to Q,/Z, and as Gx-module to the Tate
twist Qp/Zp(1). Since Gk acts trivially on L we obtain together with [SV15, Lemma

5.3, p. 24-25]
Hom3*(V, p1) = Homg*(V, Q,/Z,(1)) = Hom§s (V, L/OL(1)).

Therefore the first pairing is [Ser73, Theorem 2, p.91-92]. O]

Definition 4.3.6.
Let V € Repgi)(G k). The generalized Iwasawa cohomology of V is defined by

Hiy (K| K, V)= lim  H'(Gg,V).
KCECKoso

We always consider these modules as I' x-modules.

Remark 4.3.7.

Let E|K a finite extension contained in K. Then there is an isomorphism of
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Or-modules:
lim  H'(Gp, V)= Hi, (Kol K, V).
ECE'CKeo
Proof.
The claim follows immediately from the fact, that the set {E’|E finite | E' C K} is
cofinal in the set {E'|K finite | E' C K }. O
Lemma 4.3.8.

Let V € Repgi)(GK). Then we have
Hi, (K| K, V) 2= H'(Gx,0L[T k] @0, V).

Proof.
The proof is similar to the one of [SV15, Lemma 5.8, p.28-29]. O

Lemma 4.3.9.
V = Hiw(Ks|K,V) defines a d-functor on Repég) (Gk).

f
L
Proof.
Replace ', by 'k in the proof of [SV15, Lemma 5.9, p. 29]. O

Remark 4.3.10.
Let V.,V € Repgi)(GK) such that Viy is Op-free and G acts through its factor I'i

on Vy. Then there is a natural isomorphism
HIZW(KOO|K7 V ®OL Vb) = HIZW(KOO’Ka V) ®OL ‘/0

Remark 4.3.11.
LetV € Repgf)(GK) of finite length. Then there is an isomorphism

H! (Koo|K, V)= H (Hg,VV(1))".

Note that Hx = Gk, .

Proof.

From Proposition 4.3.5 we deduce

H'Gk,,V) = H* ' (Gk,, V' (1))"

n?
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for every n € N. Taking projective limits gives us
— lim B2 (G, VY (1)
— Jim Hom® (H2 (G, V¥(1)), L/Oy)
— Hom(® (lim H2 (G, V¥(1)), L/Oy)
— Homf (H2~(jim G, V¥(1)), L/Oy)
= Hom§?® (H*™*(Hg, V" (1)),L/0y)
= H*"(Hg,VY(1))".
O
Lemma 4.3.12.
1. Hi (KsolK,V) =0 fori#1,2.
2. H2 (Kx|K,V) is finitely generated as Or-module.
3. H,(Kwo|K, V) is finitely generated as O[T k]-module.
Proof.
The proof is similar to the one of [SV15, Lemma 5.12, p.29-30]. O

Theorem 4.3.13.
LetV € Repgi)(GK), T= chcxiTl and ) = ’l/JMKIL(V(T—l)). Then we have an ezxact

sequence
_ -1 _
0 — Hiy,(Koo|K, V) — My (V(r™h) P My (V) — HE (Kol K, V) — 0,
which is functorial in V.
Furthermore, each occurring map is continuous and O [l k] -equivariant.

Proof.
The proof for the exactness of the sequence is similar to the one of [SV15, Theorem

5.13, p. 30-31]. The proof for the continuity and the O [I'kx]-equivariance is similar
to the one of [SV15, Remark 5.14, p. 31]. O

4.4 THE KUMMER MAP

The next topic in [SV15, Section 6, p.31-34] is the formulation of a reciprocity law

and then to proof it in the following section. We imitate the ideas and constructions
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from loc. cit., and explain where the changes are, in order to transform the proof to

our situation. First, we look at the Kummer isomorphism

Rt A(Koo) = lm KOS /K" 2 Hy (Koo K, Zy(1))

which then leads to the twisted Kummer isomorphism

Ridx 3.
A(Koo) @z, T* 25 HE (Kool K, 2,(1)) @z, T* 2% H (Kol K, 0L(7)).

[SV15, Theorem 5.13, p.30-31| (resp. Theorem 4.3.13) then gives us the isomor-
phism

* ~ = v =1
Exp*: Hi, (KooK, 01(7)) 2 My 1,(00)"=" = AT

Then, combining the twisted Kummer isomorphism with Exp* gives us the homo-

morphism

Ve (lm K)) @7, T — Ay}

Oinv (gu,to ) (LLT (tO))
Gu,to (LLT (tO))

u® aty — a

This homomorphism V is well defined:
Theorem 4.1.20 says, that for u € @K; the power series gy ¢, € (O ((2))*)N=4 is
unique. Since Apr(f) = Onv(f)/f by definition we deduce from Remark 4.1.27, that

Arr(guty) € Or((Z))¥co="t. Remark 4.2.6 says that YKL = 7TZ1¢0017 therefore we

M¢K|L:1.

have Y| (ALr(gu,te)) = ALT(guto), i-e. the image of V is contained in KIL

Remark 4.4.1.
The homomorphism V is independent of the choice of tg.

Proof.
It’s the same proof as in [SV15, Remark 6.1, p. 32]. O
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Theorem 4.4.2.

The following diagram is commutative:

(@n Ky) ®z, T* = Hy (Koo K, 01(7))
x Exp*
P=1
AK\L'

By rec: (1&1 KX) — H#(p) we denote the map into the maximal abelian pro-p
quotient H ?(b (p) of Hg induced by the reciprocity homomorphisms of local class field
theory for the intermediate extensions K,,. By recg, : EIX(‘L — H%b(p) we denote the
reciprocity homomorphism in characteristic p.

As explained in [SV15, p. 33] the proof of Theorem 4.4.2 then reduces to the following

case.

Proposition 4.4.3.

For any z € Ak, and u € Ef  with unique lift 4 € (A}

)N:id
K|L K|L

we have

Res (du“) = 0,(2)(recmy, (),

where O, is the connecting homomorphism

Since the connecting homomorphism for V' = Oy, induces, by reduction modulo

77 Op, the corresponding connecting homomorphism for V' = O /770y, it suffices to

prove the identity in Proposition 4.4.3 modulo 770y, for any n > 1. Furthermore, for
every U € (ﬂ;‘L)Nzid the differential form 92 is thqi-invariant (c.f. Remark 4.2.31)

and by the adjointness of g1 and @y, (c.f. Remark 4.2.34) we obtain

aa\ di - da

for any m > 1. Therefore, in order to prove Proposition 4.4.3 and Theorem 4.4.2 it
suffices to prove the following Lemma. After the Lemma, we explain how the proof of
[SV15, Lemma 7.18, p.43-44], which is the analogous statement for Ay, transforms

to our situation.

Lemma 4.4.4.

For any z € Ak, and u € Ex,  with unique lift @ € (A;(|L

N=id
K|L )

we have

da o "
11) = 0K|L1(8@(recEK‘L(u))) mod 77 O,

Res (gp”KLl(z)
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for alln > 1.

So, in comparison to [SV15, Section 7, p.34-44| wo have to explain where to find
the Frobenius on the right hand side. Taking a closer look at loc. cit., on sees that
all the hard work was done there, we just have to identify it. In particular, [SV15,
Remark 7.3, p.35-36], [SV15, Lemma 7.4, p. 36|, [SV15, Lemma 7.5, p. 36| and the
discussion at [SV15, p. 37| are exactly the same for A |7, instead of Ay. For a better
clarity of the presentation, we summarize the results from loc. cit. in the following

Proposition.

Proposition 4.4.5.

For every n > 1, there exist unique O -linear homomorphisms

an: Ak Wi(Ek L)L,

Qn: A /TP AR L — Wa(Eg|L)L

such that @, is injective and the following diagram commutes

(I>n—1

Wi (AkL)L Agk|L

Wn(pr)Ll lan
rnfl
Wi(Exi2)z > Wa(Egr)r.

Furthermore, for every n > 1, it exists a unique O -linear homomorphism
wn—1: Win(Eg 1)L — AgL/TIAK|L

such that the following diagram commutes

CI)n—l

Wi (AkL)L Ag|L

W (pr)L \L lpr

Wn—1

Win(EgL)L — Ak L/Ti Ak|L
and the following equalities hold

@ 0 Wp_1 = Fr" 71
— _ n—1
Wp—1 0 Qp = (pK|L’

n—1
Wp—1 0 Qp =Pro 90K|L'

Here the first equality is an equality of endomorphisms of Wn(EK|L)L, the second is
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one of endomorphisms of AK‘L/WEAKM and the last one is a homomorphism from

Ak to AgL/m Ak L

The discussion on the following pages (to be precise: [SV15, p.37-43]) is the same
for Ay, instead of Az. The change then comes in the last equality of the last line
in the proof of [SV15, Lemma 7.18]. Roughly, one uses there that w,_; o @, = g07L‘_1
on Ay /n} A and therefore it is the identity for elements coming from Op, what is
the case there. For an element y € Ox we get with the last equality in the above
Proposition 4.4.5

(w1 0 @) (y) = P37 (y) mod 7 = o771 () mod .
This is exactly the desired power of o/, from Lemma 4.4.4, which did not occur in
[SV15, Lemma 7.18, p. 43-44], since the Frobenius is equal to the identity on the base
field.






CHAPTER 5

GALOIS COHOMOLOGY IN TERMS
OF LUBIN-TATE (¢, I')-MODULES

We keep the notation from Chapter 3. Recall from Theorem 3.2 (resp. from [Schl7,
p.113-114]) that ET? is the residue class field of A and ESLG]‘O’Jr is the residue class
field of A,

5.1 DESCRIPTION WITH ¢

The goal of this section is to compute Galois cohomology from the generalized p-Herr

complex, which is related to g7, and T'k.

Lemma 5.1.1.

1. The following sequences are exact:

0 0 A : A 0.

Fr—id

0 OL At At 0.

2. Let E'| L be a finite extension. For every n € N the maps

gL —id: ngE HwZEE,

: 1., nEsep,+ nEsep;+
Fr—ld.w¢EL *>w¢EL

are isomorphisms.
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3. For every n € N the map

Fr —id: ng+ — ng“‘

1S an isomorphism.

Proof.
1. We start with the sequence

r—zil —z
0 —> k, —>EP ESP 0,

and claim that it is exact. Recall that Fr(x) = 29 mod 7y, holds for all z € A
by definition. The inclusion O7, < A induces the inclusion kj — ESLep and we
have

ker(Fr —id) = {z € E" | 2% — 2} = ky.

It remains to check that Fr —id is surjective on EFP. But since the polynomial
X9 — X — « is separable for every a € ET? and ET" is separably closed by
definition this follows immediately.

Now suppose that the sequence

pr,—id

0—=0p/7"0, —= A/7TA A/mA —>0

is exact for n > 1 and consider the following commutative diagram

0—> 0L /7t — = A/rl A — "0 AJanA 0

T ! !

PRy A TG PR Wit W L WS N—

Our aim is to show that the second sequence is exact. The kernel of the
homomorphism Oy < A —» A/WZHA is TrZJrlOL, i.e. we have exactness at
the first position. Since we have ¢ (z) = z for all x € Op, we also have
OL/731 0, C ker(Fr —id). So let « € A such that Fr(z) — x = 0 mod 7} T A.
Then we also have Fr(z) — 2 = 0 mod 7}A and because the first sequence
is exact, we obtain a y € Of, such that y = x mod 77 A. Then there is an
a € A such that v —y = 7}, especially we have v — y = 7w a mod WZ—HA.
Since Fr(X) = X% mod 7, we get Fr(a) = a9 mod A and therefore
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Fr(n7a) = 77a® mod 7t A since Fr is Op-linear. Then we also get
0= (Fr —id)(z — y) = (Fr — id)(7}a) = 7} (% — o) mod 77T A.

Since A is a domain, this then implies a2 = o mod 7 A. Since the sequence
in question is exact for n = 1 by the start of the proof, we then get a z € Op,
such that z = a mod 7w A, i.e. it exists § € A such that o = z + 71;8. We
then get

r=y+ria=y+ap(z+nB) =y+ iz mod 7f A,

i.e. ker(Fr —id) C Oy /70Oy

It remains to check that Fr—id is surjective on A/ WZ'HA. Solet x € A. Because
Fr—id is surjective on A /7} A we get ay € A such that ¢r(y)—y = « mod 7} A.
As before there is now an a € A such that ¢ (y) —y = = + 7}a mod 7r2+1A.
Again, since the sequence for n = 1 is exact we can find z € A such that
vr(z) — 2z = amod A and therefore we can find § € A such that
vr(z) — 2z + 7B = a. We then get

Fr(y —nfz) — (y — 7p2) = Fr(y) —y — 7 (Fr(z) — 2)

=z +nfa—nla+ ;B =2 mod 7}TA,

ie. y—mjzis modﬂZHA a preimage of z under pr — id.

Since the transition maps OL/WzHOL — Op/n}0p are surjective, the in-
verse system (Or/7}0r), is a Mittag-Leffler System and therefore we have
@1 Or/n}0p = 0 (cf. Remark 2.3.9). By taking the inverse limit of the

sequence
0—> 0 /700, —> A/ A — 0 A /A
we then get the exact sequence
0—>0,—>A——"0 A0

The proof of the exactness of the second sequence is similar to the prove above.

Just replace E5P by ES™ which is the separable closure of Ef in E5™.

2. As before we have Fr(z) = 2% for all z € ETP. Especially this equation holds

for elements in EsLep’Jr and EE The injectivity of the above maps then is easy



120

5.1. DESCRITPTION WITH ¢

to see:
Let 0 £z € wZESLep’+. So, in particular we have deg,,, (z) > n > 0 and therefore
also deg,,, (Fr(z)) > deg,, (), i.e. Fr(z) — 2 # 0 and so Fr — id is injective on
wpET. Because of E}, C E7” the homomorphism ¢, — id is also injective on
ngg
For the surjectivity let « be an element of wg fpﬂL or of ngE Then the

series (Fr(a)?); converges to zero and therefore

—Fr(a)’
=0

is also an element of ngSLep’+ or of wZEE and clearly is a preimage of o under
Fr —id.

Let n,l € N be fixed and note that there is a canonical identification
(wpA")/(mpwiAY) = wi (A /n]AY)

since w7 is not a zero divisor in both A* and A* /7 A*. Now assume that
Fr —id: WZ(A+/7TEA+) — wg(AJr/ﬂ’zA‘*')

for all natural numbers k <[ is an isomorphism. Note that we just proved this

for [ = 1. Consider the commutative diagram:

Fr —id: wg(A+/7rlLA+) — wg(A“‘/ﬂ'ﬂ;Aﬂ

! !

Fr—id: W} (At /70T AY) — wi(AT/al T AT)

Our aim is to show, that the latter horizontal homomorphism is also an isomor-
phism.

Let # € AT such that Wy # 0 mod 7rlL+1A+. The degree n-term (with respect
to wy) of Fr(wyz) — wyz is wy(mp — 1)z and therefore it is unequal to zero

modulo 7rlLJrl

. To see this, we assume wy (7 — 1)z = 0 mod 71 and let j be
the smallest integer such that 27 > n + 1 and multiply this congruence with

(1+m)(1+72)---(1+ w%jfl). Then we get

0=wy (ﬂ'i — 1)z = —wyz mod AT
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what we excluded, i.e. it has to be wi (7 — 1)z # 0 mod 7T AT and therefore
Fr — id is injective on wg(A+/7rlL+1A+).

Let z € wZA*. Then there exists y € ngJr such that ¢,(y)—y = ¥ mod 7t A*
(because we assumed the surjectivity for all values < [), i.e. there exists
o€ wZA“‘ such that Fr(y) —y =z + WlLa. Then again there exists 8 € ng+
such that Fr(8) — 8 = a mod 7, i.e. there exists some 7 € ngJr such that
Fr(B8) — p = a+ mrn. We then get

(Fr —id)(y — 7.8) = (Fr — id)(y) — 7L, (Fr —id)(8)

=2+ 71ha—nh(a+mrn) =2 mod r AT,

i.e. the map Fr —id is surjective on wg(A+/7rlL+1A+). Since these maps are all
isomorphisms, passing to the projective limit gives that the map Fr — id is an
isomorphism on ng+

O

Corollary 5.1.2.

For every n € N the following sequence is exact:

0—>0p —=AJulAT — 0 AJTAT 0.
Proof.
In Lemma 5.1.1 we showed that
0 Or AT A 0.

is an exact sequence and that
Fr —id: ng+ — ng+

is an isomorphism for every n € N. Since every element of the image of Oy < A has
degree 0 (with respect to wg) the homomorphism Or — A/ng+ is still injective.
Since Fr fixes Op, it is clear that we have Op C ker(Fr — id). For the other inclusion
let x € ker(Fr — id). Then there exists an o € A such that o mod ng“‘ = x and
Fr(e) —a € wjA™. But since Fr —id is an isomorphism on w§ A™ there exists also a
B e w$A+ C A such that Fr(8) — f = Fr(a) — a. Because of the exactness of

0 0 A A 0
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it then exists n € O, such that n = a — 8. This implies 7 = o mod ngJ’, ie.n==x
which means ker(Fr —id) € Op. This proves the exactness in the middle. For the
surjectivity of Fr — id recall that A — A/ng+ and Fr —id: A — A are surjective

and consider the commutative diagram

A Fr—id A
Ajwp At - AjwpAT.

This implies that the homomorphism Fr—id: A/wfA* — A/wlA™ is also surjective.
O]

Lemma 5.1.3.
Let A|AL be a finite, unramified extension. Then, for every m € N, the canonical
projection A/TrZ”'HA — A/m"A has a continuous, set theoretical section with respect

to the weak topology on A.

Proof.
From Proposition 3.5.4 we deduce that

for some finite, unramified extension F|L. Therefore we have
A/m A= Op/mf0p((X))

for every m € N. Therefore it is enough to give a continuous set theoretical section
of the canonical projection Op /77" Op((X)) — Op/mPOg((X)) with respect to
the X-adic topology. Since the Og/7'OF are finite discrete, there exists for every

m € N a continuous map
b OE/T('ZLOEHOE/TFZH_loE

which is a set theoretical section of the canonical projection. We then define a map

am: Op/mf0g((X)) Op /1 0R((X)),

Zz’>>foo AiX ———— Zi>>foo Lm(/\i)Xi-

This then clearly is a set theoretical section of the canonical projection. We have to
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check continuity.

Solet f € Op/n7 T OR((X)) and n € Ny. If then o5, (f + X"Op/77 1 Op[X]) is
empty, there is nothing to prove. So assume there is g € a;;!(f+X"O /7 OR[X])
and let h € X"Op/m"Op[X]. Then g and g+h coincide in degrees < n and therefore,

by definition, also ay,(g) and a;,(g + h) coincide in degrees < n, i.e.
am(g+h) € am(g) + X"Op/m T Op[X] = f + X"0p /] 05 X]
since au(g) € f + X"Op/m T OE[X]. It then follows
g+ X"0p/mr0p[X] C ot (f + X"Og /77T OR[X])

and therefore that «,, is continuous. O

Corollary 5.1.4.
For every m € N the canonical projection A/W?JAA — A/m"A has a continuous,

set theoretical section.

Proof.
Since A is the mp-adic completion of A7 it is

A/mp'A = AL /7 AL
for every m € N. Since colimits are exact it is

nr m nr __ m
L/7r = U A/mfrA
AlAp fin, nr

for every m € N and since we have for every A|Ap finite and unramified and
every m € N a continuous, set theoretical section of the canonical projection
A/TI‘ZL—HA — A/7*A (cf. Lemma 5.1.3) this induces for every m € N a set theoreti-
cal section of the canonical projection A /771 AL — ABr/7m AL which then is
continuous, since A" carries the topology of the colimit and then so does A}" /7 A"

for every m € N. 0

Lemma 5.1.5.

Let V € Repgi)(GK), set M = Mg (V) and Vi, = V/7['V as well as
My, == M/7*M for m € N.

Then the transition maps of the inverse systems (Vip)m, (Mm)m and (A ®o, Vin)m

are surjective and they have a continuous, set theoretical section. In particular, the
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short sequences

d®-m
0—> A ®o, Vin A @9, Viny1 —= A ®p, Vi — 0,

0 My, — > My,iq M, 0

are exact and have continuous, set theoretical sections.

Proof.

Since M|z is exact as an equivalence of categories (cf. Theorem 3.9.1) and the
tensor product is right exact, it is immediately clear that the transition maps of the
systems (Mp,)m and (A ®o, Vin)m are surjective since the transition maps of (Vi,)m
are.

Since the V,,, are finite and discrete one can define a set theoretical section of
the canonical projection V11 — Vi, by choosing a preimage for every element in
Vin. Since M, is a finitely generated A g p-module, there are for every m € N

isomorphisms of topological A g|z-modules

n(m)

(m)
My, = @ Agin/mr AxL
i=1

such that ngm) < ngfl) and the canonical projection M,,+1 — M,, maps the i-th com-
m (”n+l) m (m)
ponent of @?:(1+1)AK|L/7TZZ A g1, to the i-th component of EB?:(l)AK‘L/Trzl Agr

for i > n{"™) and is zero on the i-th component with i > n(™). With Lemma 5.1.3 we
then obtain a continuous, set theoretical section for every component, which then
also gives a continuous set theoretical section for M, 11 — M.

As topological Or-module we have

f(m)
(m)
A®o, V= P A/my A
=0

and therefore we see that there exists a continuous, set theoretical section of the
canonical projection A ®g, V41 — A ®g, Vin as above using Corollary 5.1.4 instead
of Lemma 5.1.3.

The statement on the short exact sequences then follows immediately. O

Lemma 5.1.6.
Let E|L be a finite extension and Hg = Gal(Q,|Ex) as usual. Then the operation of

Hpg on EY? is continuous with respect to the discrete topology on ETP.

Proof.
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Let z € ETP. Then there exist a finite extension F|Eg such that # € F. Then
z is fixed by U := Gal(E}”|F) which is an open subgroup of Hp. If then 7 € H
sep

and y € E;" are such that 7(y) = x, then Ut x {y} is an open neighbourhood of
{7} x{y} in Hg x EY* with o(7(y)) =z for all o € U. O

Lemma 5.1.7.
Let V' be a finite dimensional ki -representation of Gx. Then there exists a finite

Galois extension E|K such that Hg acts trivially on V.

Proof.

Since the action of Gk on V is continuous, the homomorphism Gx — Auty, (V) is
continuous and since V is a finite dimensional kj-vector space, it is finite and so
Auty, (V) carries the discrete topology, i.e. the kernel of the upper homomorphism is
open, which means that there exists a finite Galois extension F|K such that Gg acts
trivially on V. With Gg also Hg acts trivially on V. 0

Lemma 5.1.8.
Let V' be a finite dimensional kr-representation of Gx and E|K a finite Galois
extension, such that Hg acts trivially on V' and set A := Gal(Foo|Koo). Then A acts

on the short exact sequence
0= wiEfL @k, V > Eg @, V = Eg/wiEL @k, V =0

and it holds
1. H(AEg ®, V) =0 for all j > 0.

2. There exists r > 0 such that ngj(A,ngg ®k, V) =0 for all j > 0 and
n € 4.

Proof.
The proof is literally the same as the one of [Sch06, Lemma 2.2.10, p.20| O

Lemma 5.1.9.
Let V' be a finite dimensional kr-representation of Gk and E|K a finite Galois
extension, such that Hg acts trivially on V and set A = Gal(Ex|Ko). Then we

have
1 (EfY @k, V)Ix = (Ep @, V)2,

2. ((,L)ZESLEP’Jr ®y, V)K= (ngE ®k, V)A for alln > 0.
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Proof.
In both cases the proof is the same. So let X be ET? or ngsLep’+ for some n > 0.
Note that Hx/Hp = A. We then get

(X Ok, V)HK = ((X Ok, V)HE)HK/HE = (XHE Ok, V)Aa

where the last equation is true, since Hp acts trivial on V. O

Before stating a corollary, we should introduce some notation. Since all projective
systems which appear here are indexed by the natural numbers, we will make the

following definitions only for projective systems indexed by natural numbers.

Proposition 5.1.10.

Let V' be a finite dimensional kp-representation of Gx and E|K a finite Galois
extension, such that Hg acts trivially on V' and set A := Gal(Fx|Ks). Let in
addition M = Mg (V) and

H
My, := M/ (wZ Pt Rk, V) “

Then we have

1. The inverse systems (Hj(A,ngE @k, V))n and (Hj(A,EE/wZEE Rk, V))n
are ML-zero for all j > 0.

2. The map of inverse systems (My)n — (HO(A,EE/wZEE ®k, V))n is an ML-

1somorphism.
Proof.

1. Since V is a finite dimensional kp-vector space, it’s flat and therefore the
homomorphism w;HEE ®r, V C ngg ®pk, V is injective and induces a

homomorphism
H (A, wh M EL @, V) = H (A, WiEf @, V).

The image of this last homomorphism is a subset of wsH’ (A, ngE Qk, V), ie.
the maps Hj(A,w(’;EJEC Qk, V) — H]'(A,ngJEr ®y, V) are zero for k > n+r
(cf. Lemma 5.1.8, 2.), i.e. the inverse system (H7(A, ngE ®k, V))n is ML-zero
for j > 0.

Since every class in Eg/ ngE has a unique representative of highest degree

< n — 1 in wyg the homomorphism Er — EE/WQEE has a set theoretical



CHAPTER 5. GALOIS COHOMOLOGY IN TERMS OF LUBIN-TATE
(p,T')-MODULES 127

splitting (by sending a class to this representative). This map is continuous,
since the preimage of a subset of Eg in Eg /ngE is equal to the image under
the canonical projection, which is open by definition. Since V is flat, the

sequence
0= wjEL @, V= Ep@i, V= Ep/ulEL @, V=0

is exact and we can deduce a long exact cohomology sequence (cf. [NSWO08,
(2.3.2) Lemma, p.106]) and since H/ (A, Eg ®, V) =0 for j > 0 (cf. Lemma
5.1.8, 1.), the homomorphism

HI(A Be B 01, V) - HIV(A B o, V)

is an isomorphism for all j > 0 and the diagram

HI (A Ep/wlEf @, V) HITHA, BB @, V)

| T

HI(A Bp /)T B @, V) — HIYH(A, WM Ef @, V)
commutes. This means that the transition map
HY (A, Ep/wiEf @, V) = H/ (A, Ep/WjEf @, V)

is zero for k > n-+r and therefore the inverse system (H7 (A, EE/wZEJbC ®k, V))n

is ML-zero.

2. As seen before, for every n > 0 we have an exact sequence
0= wiEfL @, V= Epy, V — EE/ngJbC Rk, V — 0.

Taking A-invariants then gives an exact sequence

0 (ngE Oky, V)A (Ep @, V)A
co- — (B /WiEL @, V)& — HY (A, WiEf @, V) —0,

where the last term is zero because H/ (A, Eg ®;, V) =0 for j > 0 (cf. Lemma
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5.1.8, 1.). With Lemma 5.1.9 this sequences becomes

(EYP @k, V)HK ———
P (EE/LL);EE ®kL V)A —_— Hl(A,ngg ®kL V) —0

0 —— (WIETPT @, V)Hx

and then gives the following short exact sequence

0 — (EFP @y, V)5 [(WiEFPT @y, V)Hx
(Ep/wiEf @, V)2

HY (A, wpEf @k, V) —0.

In particular, H I(A,ngE ®k, V) is the cokernel of the homomorphism
M, — (EE/ngE @k, V)2, According to the first part of the proof the
inverse system (H I(A,ngE ®k, V))n is ML-zero, and since the kernel of
M, — (EE/ngE ® V)2 is zero it is also ML-zero, which then ends the proof.

O

Theorem 5.1.11.
Let V € Repgi)(GK) and set M = Mg (V). Then there are isomorphisms

H:(Gr, V) —= 35 (T, M),

PK|L

o

H*

cts

(Hg, V) T (M),

PK|L

These isomorphisms are functorial in V' and compatible with restriction and corestric-

tion.
Proof. In this proof, we follow the proof of [Sch06, Theorem 2.2.1, p.702ff]

Step 1: Explaining the strategy.
First, for m € N set Vp, := V/77'V and My, := M/7"M. Since Mgy, is an
equivalence of categories (cf. Theorem 3.9.1) it is exact and therefore we have

M, = Mg (V). The open subgroups
M 0 (WEAY ®0, Vi) = (WIAY @0, Vi)'

form a basis of neighbourhoods of 0 in M,,. These subgroups are clearly stable

under the operation of ' and since ¢, commutes with the operation of Gk on
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(wg At ®@o, Vm) these subgroups are also stable under ¢g/;. We then set

Mg = My (WEA* ©0, Vi) '5.

)

Hg
Since (u)ZAJr ®oy, Vm> is an open subgroup, this is a discrete I' x-module and

we have topological isomorphisms

M,y, 2 lim M,
"
M == 1im My,

m

In Corollary 5.1.2 we proved that the sequence

OHOLHA/w;A"' Fr—id

n At
AjwiAT —=0
is exact and since A/ w"AJr is a free Or-module, it is flat and therefore the sequence

0> Vi ——> A/WlAT ®o, Vi — 0

A/WIAY ®g, Vi —=0

is also exact. Then Lemma 2.3.3 says that for every m,n > 1 we have a quasi

isomorphism
Ces(GK, Vi) — Ci (G, (A Jwg AT) @0, Vi)

The inverse systems (Vin)m and ((A/wjAT) ®o, Vin)nm have surjective tran-
sition maps. From Corollary 2.1.12 we then can deduce that also the inverse
(GK,Vin))m and Cgy(Gk, ((A/WZA+) ®0, Vim))nm

have surjective transition maps and Lemma 2.3.8 then says that the system

systems of complexes (C%
Ch (GK, (A/wiAT) ®o, Vin))n,m has surjective transition maps as well.
From the quasi isomorphism C&(Gk,Vin) — Ch(Grk,(A/WjAT @ V) we
then can deduce with Proposition 2.3.11 that the cohomologies of the com-
plexes lim Ch (G, (A/w”AJr ®0, Vm)) and lim *s(GK, Vi) coincide. Since
Jim o Cos(Gr, Vin) = C&(Gk, V), the cohomology of lim Co(Gr, Vi) 18
CtS(GK, V'), which then is also computed by @nm Ch (G, (A/ng“‘ ®0, Vim))-
On the other hand, since the canonical inclusion ¢: My, , — (A/wZA*) ®o, Vi
commutes with 7, and since together with the canonical projection pr: Gxg — I'e

it holds
t(pr(o)z) = ou(x)
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for all 0 € Gk and x € My, , and since the operations of ¢ 7, and Gk respectively
'k commute wo get an induced morphism of complexes

. [ ]
Qmn : CWK\L

(FK7 Mm,n) — GI.J‘r(GKa (A/ng+) ®OL Vm)

(cf. [INSW15, I §5, p45], the additional properties concerning ¢ K|z we noted above,
ensure that we get the morphism of the above total complex with respect to ¢,
on the left hand side and Fr on the right hand side).

We now want to see that 1£1n 1 Qmin is a quasi isomorphism. Because of
I'&nmm C, (T, My = G;KlL(FK,M) (cf. Lemma 2.3.7), this then says that

PK|L

the cohomology of €5, (I'x, M) and im Ch (G, (A/ou;;AJr ®0, Vin)) coincide.

PK|L

But then the cohomologies of G;K\L(FK’ M) and C8,(Gk,V) coincide, what is
exactly what we want to prove.

To see that @nm Qm.p Is @ quasi isomorphism, it is enough to see, that lim amn
is a quasi isomorphism for every m > 1. Because if this is shown, one knows that
the inverse systems of complexes (G:PK\L(FK’ M))m and (G;KIL(GK, A®o, Vin))m
are quasi isomorphic. Since the transition maps M,,+1 — M,, as well as
A ®¢, Viny1 =& A®p, Vp, are surjective and have a continuous section (cf. Lemma
5.1.5), one can see as before, using Corollary 2.1.12 and Lemma 2.3.8, that the in-
verse systems of complexes (G;K‘L(FK, M))m and (e‘:’KIL(GK’ A ®o, Vin))m have
surjective transition maps. As before with Proposition 2.3.11 respectively Remark
2.3.12 one then sees that lim - G;K\L(FK’ M,,) and lim G;K\L(GK’ A ®g, Vi) are
quasi isomorphic.

So, what is still to show, is that @n Q. 18 @ quasi isomorphism for every m > 1.

This will be the rest of the proof.

Step 2: Reduction to the case m = 1.

Since for every m > 1 the sequence
0— Vi — Vi1 — V1 —0.

is exact and Mgy, is an exact functor (since it is an equivalence), this implies that

for every m > 1 there is a short exact sequence

0 Mm Mm+1 *>M1 — 0.

By the definition of the topology on the M, it is clear, that the topology of M,
is induced from that of M,,11 and from Lemma 5.1.5 we deduce that it has a

continuous set theoretical section. Therefore Proposition 2.2.35 says that we get a
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long exact sequence of cohomology.

Now assume the result is shown for m = 1. Then :H:Z;K\L(PK’ M) — H}(Gk,V)
is an isomorphism for every V with w7V = 0. Induction on m and the 5-lemma
applied to the following diagram which arises from the long exact cohomology

sequences (where we write I' = 'y and G = Gk and ¢ = ¢g|1)

— 0 §
}Cfp 1(F7 Ml) - j{ga(ra Mm) - f]-Cfp(]: Mm+1> - j{ga(ra Ml) - j{foJrl(Fa Mm)

T R

HL NG V) 22> HY (G Vi) — HL (G, Vi) — Hl (G, V1)~ HYENG, Vi)

cts
then implies the result for all m > 1.
Step 3: Splitting a1, up.

For the rest of the proof we may assume 77V = 0 and therefore also 7 M = 0,

but we will still write M, to avoid confusion. Note that this implies
A®o, VEET® V,

ngJr ®o, V = ngsLep’+ Rk, V

as well as the correspondingly isomorphism with respect to the fixed modules of
Hyg.
Now fix a finite Galois extension F|K such that Hg acts trivially on V (cf. Lemma

5.1.7). Then, the canonical inclusion

_ C (EsLep®kL V)Hie
s (ngSLeP7+®kLv)HK (ngSL,E}p7+®kLV)HE

=Ep/WjEp @, V

induces together with the canonical projection Gal(Ex|K) — 'k, as in step 1 for

Qm.m, for all n € N a morphism of complexes

Bt €, (T, M) —= €y (Gal(Eo|K), Ep /wiE L @, V).
Simultaneously, the canonical inclusion Eg /wZEE R, V — EFP /u)ZESLep’Jr ®Qk, V
together with the canonical projection G — Gal(E|K) induces for all n € N a

morphism of complexes

Yt Ch(Gal(Ew|K), Ep/wiEf @, V) — € (G, Ep” /Wi @, V),
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Since both diagramms

M1,n§/—>\EE/w$EE Rk V g <— Gal(Ex|K)
ESLeP/w;LE??P,-‘r ®kL ‘/7 GK

are commutative, where all the arrows in the left diagram are canonical inclusions
and the ones in the right diagram are canonical projections, it is immediately clear
that also the diagramm

. Brn
€y ... (Or, M)

PK|L

Ch(Gal(Ex|K), Ep /W) EL @1, V)

l’yn
a1n

Ch (Gic, B Jwp BT @, V)

commutes. So, to prove that @n a1, is a quasi-isomorphism it is enough to prove
that gnn By and l&nn ¥n are quasi-isomorphisms. In addition, we will also show

that ~, is a quasi-isomorphism for every n > 1.

Step 4: @n Yn is a quasi-isomorphism.
Due to Lemma 2.2.34 there is an Fo-spectral sequence converging to the cohomology

of the source of ~,

H(Gal(Eo|K), Hp (B /wiEL @, V) —
Ky (Gal(Ex|K), Ep/wiEj ©1, V)

as well as en Fr-spectral sequence converging to the target of v,

HY(Gal(Eu|K), Hy (Hp, BYP JwlBFPT @y, V) =
HE (G, EXP JwlEFPT @, V).

The canonical inclusion Eg/w)Ef ®p, V < Ei:ep/ougEi-fp’Jr ®g, V together with
the trivial map Hg — 1 then induces a homomorphism on the above Fs-pages.
Together with the from -, induced map on cohomology this then gives a morphism
of spectral sequences. So, to show that =, induces an isomorphism on cohomology
it is enough to show that the induced homomorphism on the above Ey pages
is an isomorphism. And for this it is enough, that the homomorphism between
the coefficients Hp (Ep/wiEL @, V) and Hp, (Hg, ESLeP/ngsLep’Jr ®k, V) is an
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isomorphism. Since Hg acts trivially on V' it is (cf. Proposition 2.3.14)

fovr(EE/WZ E Qkp, V)= }C%r(EE/wZEE) Qr, V
j_Cll:“r(}IEa ESLBP/WZ ?epﬂr Qkp, V)= }C%r(HE, Es‘fp/wg ?ap,+) Qp, V.

Therefore it is enough to show that there is an isomorphism between H% (Ep/ ngE)

and HY (Hg,ET?/ ngs‘Lep’Jr). To see this, consider the commutative square

35, (Ep) 32 (Ep/wiER)

| |

i]-Cllzﬂr(ILIE7 Esl’:ep) - }C%I‘(HE7 Ei‘?p/ngzep’+)7

where EY" is regarded as discrete Hg-module (cf. Lemma 5.1.6) and where the
horizontal maps are induced from the respective canonical projections and the
vertical maps from the respective canonical inclusions.

First we want to see, that the upper horizontal map is an isomorphism. J—C%r(E E)
is computed by Eg el g g and H% (Ep /ngE) by the corresponding complex
and the square

Fr—id
Ep S Ep

| |

Ep/wlEf — > Ep/wE}

is commutative. Denote the kernel and image of the upper horizontal map by
k1 and im; and the ones of the lower vertical map by ko and ims respectively.
By Lemma 5.1.1 the map ngE Froid ngE is an isomorphism, especially is
ngE C im; and so we see immediately img C im; /wZEE For the other inclusion
let T € im; / ngg and x € Eg a preimage under the canonical projection. Because
of ngE C im; we deduce x € im;. If y € Eg is a preimage of x under Fr — id,
then because of the commutativity of the latter diagram we get (Fr —id)(y) = 7,
i.e. T € img. Therefore K}, (Eg) and fHI{-\r(EE/ngJEC) coincide.

For the term in degree zero let x € k1 such that x € wZEE Since Fr — 1 is an
isomorphism on wZEJEC and (Fr — 1)(z) = 0, x itself is zero, i.e. the canonical
homomorphism x1 — ks is injective. Let now 7 € k2 and v’ € Eg a preimage under
the canonical projection. By commutativity it is (Fr — 1)(’) = 0 and therefore
(Fr—1)(y') € ngE Again since Fr — 1 is an isomorphism on wZEE we find an
element y” € ngE with (Fr — 1)(y') = (Fr — 1)(y"). Set y := 3/ —y”. Then
y=vy —y" =y =mnand (Fr — 1)(y) = 0, i.e. K1 — k2 is also surjective and
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therefore an isomorphism. Since every other cohomology group is zero, we conclude
that
b ~ qb

for all b > 0.

For the lower horizontal map in the upper square, recall that Lemma 5.1.1 also
says that Fr — 1 is on ngSfp’Jr an isomorphism. Therefore one sees with a similar
argument as above that the canonical projection ET* — EP/ ngSLeP’+ induces an
isomorphism between the cohomology groups ﬂfg;(EsLep) and f}{%lr(EsLep / ngSfp’Jr)
for all ¥ > 0. Lemma 2.2.24 states that there are two FEs-spectral sequences
converging to Ky, (Hg, ET?) respectively Hy, (Hg, BT /ngS‘Lep’+) (recall from the

beginning of Step 4 that E7® is considered as discrete Hp-module):

HY (Hp, HH(ESP)) = Hy ™Y (Hp, EYP)
H (Hp, W (B B2 ) = 9 (Hi, By B> ).

We conclude as before: The canonical projection Ef” — ETP /ngSLep’Jr induces
a morphism of spectral sequences and since the induced homomorphism is an
isomorphism on the FEs-pages, we obtain an isomorphism between the limit terms
Hp (He, EFP) and H, (Hp, BY? /Wl EFT) for all b > 0.

To see that the left vertical arrow in the first square is an isomorphism we consider

the Fs-spectral sequence (cf. Lemma 2.2.24)
fo(H (Hp, ET) = 3G (Hi, BL).

Since ETP is a separabel closure of Ep with Galois group isomorphic to Hpg
it ist HY (Hp,EY?) = 0 for all ¥ > 0. Then [NSW15, Chapter II §1, (2.1.4)
Proposition, p.100] says that we have an isomorphism fH%r(EE) = f}{lI}\r(HE, ETP)
for all b > 0 (here we identified H(Hg, ET?) = (E?)H#e = Ep), which is induced
from the canonical inclusion, i.e. the left vertical arrow in the first square also is an
isomorphism. Then also the right vertical arrow is an isomorphism (since all other
arrows are isomorphims) and so is the map on Es-terms from which we started.
Hence 7, is a quasi-isomorphism for all n.

To see that @n ~Yn is an isomorphism, it remains to check that the transition

maps are surjective (cf. Proposition 2.3.11 respectively Remark 2.3.12). Since the
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transition maps

EE/werlEE ®kL Vv EE/ngE ®kL V,

Esljfp/wz—HEpr- ®kL 174 ESLGP/WZETP# ®k'L Vv

are surjective and the groups carry the discrete topology, Corollary 2.1.12 says that

also the transition maps

Ce(Gal(Ex|K), Ep/wi T EY @, V) — Ce(Gal(Ex|K), Eg/wiEf @, V),
Coo( G, EfF Juwf ETP @, V)

Coo(Gr EfP JwBETP @, V)

are surjective. But then Lemma 2.3.8 says that the transition maps

€. (Gal(Ex|K),Eg /wg“Eg ®py, V) — C(Gal(Exo|K), B /w)EL @, V),
Cr (G, EXP T ETP T @y, V) C (G, ETP /Wl EFP™T @, V)

are surjective, too. Then Proposition 2.3.11 respectively Remark 2.3.12 say that

lim i 1 isomorphism.
., Yn is a quasi isomorphis

Step 5: 1£1n Bn is a quasi-isomorphism.
Now let A := Gal(Fw | Koo). Lemma 2.2.34 then says that there is an Es-spectral

sequence of inverse systems of abelian groups given by
Hin(Cx, H (A, Eg/wiBL @, V) == Hi1 (Gal(Ex| K), Ep /wiEL @, V).

We will write n@%ij for second page of this Fy-spectral sequence, ,&* for its limit
term and é"zij = @n nco‘“;j as wells as &F = l&ln &% Proposition 5.1.10 says that
the system (H? (A,EE/WZEJEr ®k, V))n is ML-zero for j > 0, i.e. for every n € N

there is an m(n) € N such that the transition map
Hi(AEg /w;”(”)Eg Rk, V) — HI (A, Ep /wjEL @, V)

is the zero map. For fixed n € N and m(n) € N as above, we then obtain that the

transition map

Cgts(rK) Hj(A’ EE/w;n(n)EJbr? Ok V)) - Céts(FKa Hj(A’ EE/WZEJEF‘ Oy, V))
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is also zero for all 4 > 0 and j > 0. Then clearly the transition map
e%‘r(FK7 HI(A, EE/WZL(n)EE R, V) — e%‘r(FK7 HI(A, EE/"‘):;E]JEF’ R, V)

is zero for all 4 > 0 and j > 0, too. And so is the induced map on cohomology,
i.e the inverse systems (nézw)n are ML-zero for all # > 0 and j > 0. But then the
edge homomorphism &° — &* is an isomorphism, since & =0 for all i > 0 and
j >0 (cf. [NSW15, Chapter II, §1, (2.1.4) Corollary, p.100]). Recall that this edge
homomorphism is induced from both, the canonical projection Gal(Ex|K) - '
and the canonical inclusion (EE/WZEE Rpy V)A — EE/wZEJLC @k, V.

Proposition 5.1.10 says that (7,)n: (M1,)n — (HO(A, EE/ng'g @k, V))n is an
ML-isomorphism. Therefore the inverse systems (ker(n,)), and (coker(n,)), are
ML-zero. As above, we then deduce that also the systems (GfOKlL (Tk, ker(ny,)))n and
(€L (T, coker(ny)))n are ML-zero for all i € Ny. Since HY(A, EE/ngE ®k, V)
and My, carry the discrete topology for all n € N, we deduce from Lemma 2.2.26,

which says that €% (g, —) is for discrete modules an exact functor, the exact

sequence

e%‘r(rK 77771)

¢, (Tk,Mi,)

PK|L

0 ————C,, Tk ker(nn))

PK|L

- —CL (P, HY(A, Ep /WlEL @, V) — € (T, coker(n,)) —— 0.

Taking inverse limits then gives us an isomorphism of complexes

(y (FKaMl) = el.:‘r(FKaHO(AvEE ®k‘L V>)7

PK|L

which, by construction, is induced from the canonical inclusion My — Eg ®;, V
and which then prolongs to an isomorphism of its respective cohomology groups,

i.e. for all i € Ny we get

j{i (FKle) = %r(FKvHO(AvEE Ok, V))

PKI|L

Together with the observation from above, that the edge homomoprhism &3° — &

is an isomorphism for all ¢ € Ny we deduce for all ¢ € Ny the isomorphism

H. Tk, M) = Hp(Gal(Ex|K),Ep @k, V),

PK|L

which by construction is @n Bn-
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5.2 DESCRIPTION WITH ¥

In this section we want to give a description of the Galois cohomology groups of a

representation using a -operator.

Definition 5.2.1.
Let A be an Op-module. We say that A is cofinitely generated if its Pontrjagin
dual AY = Hom{® (A, L/Op) is finitely generated.

Remark 5.2.2.

1. Since finitely generated Op-modules together with their natural topology are com-
pact, cofinitely generated Op-modules are discrete, which means that
Hom‘gz(—, L/Or) =Homg, (—,L/Or) for both, finitely and cofinitely generated

Or-modules.

2. Forn € N we have an isomorphism

Or/770L (Or/m70r)Y

x mod 77 0r ——[1 mod 7} Or, + 7, "2 mod O]

which then also implies a non-canocial isomorphism T = TV for a finitely

Vv is compatible with finite direct sums.

generated torsion Or-module, since (—)
These isomorphisms are clearly topological, since all these objects carry the

discrete topology.

3. Due to Pontrjagin duality (cf. Proposition 4.3.2) a cofinitely generated Op -

module is always the Pontrjagin dual of a finitely generated O -module.

4. If T € Repgi)(GK) is torsion, then TV also is a finitely generated torsion

Op-module with a continuous action from G .

Definition 5.2.3.
Let A be a cofinitely generated Op-module and n € N. We denote by A,, the kernel

of the multiplication pr» with 77 on A, ie.
Ap = ker(pqn: A — A).

Proposition 5.2.4.
Let A be a cofinitely generated Or-module. Then we have A = hgn A,
In particular, if A is torsion, say with 77'A = 0 for some m € N, then we have

A=A,
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Proof.

Let T be a finitely generated Op-module such that A = Hom%tE(T, L/Or), let
€1,...,em be a set of generators of T and let f € A. Then for every i € {1,...,m}
there exists an n; € N such that 77" f(e;) = 0. Set n := max;n;. Then it is 7} f(a) =0
for every a € A, ie. f € A,.

In particular, if there exists m € N such that 77'g = 0 for every g € A, then the

above shows A = A4,,. O
Lemma 5.2.5.
Let T € Repgf)(GK) such that m"T = 0. Then Hy acts continuously on A ®g, T

equipped with the discrete topology.

Proof.
Recall from page 57 that

A =~ @Af /T AT
n
and that Hp is the Galois group of A}|Ar. The latter means, that Hj acts
continuously on A7" with respect to the discrete topology because if x € A}", then
B (z)|By is a finite extension and therefore it exists an open subgroup U < Hp,
which fixes z. But then (U,z) is an open subset of the preimage of x under the
operation
H; x B, — By,.

Then Hj, also clearly acts continuously on A} /77 A" for all n € N equipped with the
discrete topology. Since Hg is an open subgroup of Hj, it then also acts continuously
on A} /m A} for all n € N equipped with the discrete topology. Because of 771" = 0
we have T' =T ®o, Or/7}0, and therefore

ARy, T=A®o, OL/WQOL@)OLT:A/WQA@(‘)LT: v/t T ®o, T.

Since Hg acts continuously on both T and A} /77 A" with respect to the discrete
topology it does so on the tensor product equipped with the linear topological

structure, which then again is discrete. O

Lemma 5.2.6.
Let T € Repgi)(GK) such that 77T = 0. Then we have Hi(Hi, A ®o, T) =0 for
all i > 0.

Proof.
This is [SV15, Lemma 5.2, p. 23-24], since it is even H!

cts

(U,ET?) =0 for all i > 0
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and open subgroups U < Hj. O

Corollary 5.2.7.

Let A be a cofinitely generated O -module with a continuous action from Gy . Then
Hp acts continuously on A ®g, A equipped with the discrete topology and we have
Hi(Hg, A ®o, A) =0 for alli> 0.

cts

Proof.
If A is torsion, then Remark 5.2.2 says that this is just Lemma 5.2.5 and Lemma
5.2.6.
If A is general, then with Proposition 5.2.4 we can write A = hﬂn A,,, where the A,

are torsion Op-modules. Since tensor products commute with colimits we have
hﬂA Roy, A, = A®(‘)L A
n

algebraically. But the direct limit topology of @n A ®p, A, again is discrete and so
the above isomorphism is also topological. Then, A ®p, A is a discrete Hy-module
and therefore we deduce from [NSW15, (1.5.1) Proposition, p. 45-46]

H'(Hr, A ®9, A) = lim H'(Hg, A @0, An)

for all i > 0. Since H'(Hg, A ®p, An) = 0 for all i > 0 and n € N we also have
H{(Hg,A ®9, A) =0 for all i > 0. O

Lemma 5.2.8.
Let A be a cofinitely generated Or-module. Then the sequence

Fr®id—i

0—=A—=A®y, A d A®y, A—=0.

is exact and has a continuous set theoretical splitting, where all terms are equipped

with the discrete topology.

Proof.
Since A is a flat Op-module the first assertion comes from Lemma 5.1.1, the second

is obvious since all terms carry the discrete topology. O

Proposition 5.2.9.

Let A be a cofinitely generated Op-module with a continuous action from Gg. Then
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the exact sequence

Fr®id—i

O—>A—>A®@LA4d>A®OLA—>O.

and the canonical homomorphism

(A @9, A)fKC—~ (9

cts

(HK, A ®@L A)
mduce quasi isomorphisms

Cos(Hic, A) — Ch (Hr, A ®0, A) <= Cf, | (Mc|1(4)).
Proof.
Since Fr commutes with the action from Hg, the exact sequence

Fr®id—i

0—>A—> ARy, A2 A gy, A—>0.

clearly is an exact sequence of (discrete) Hg-modules. Then Corollary 2.3.4 says that

H’i

cts

(HK, A) = j{%‘r(HfﬂA ®OL A)a

which is exactly the first quasi isomorphism. For the second quasi isomorphism it is

with Proposition 2.2.24 enough to show

‘ M Ay | ifi=0
Jox K\L() 1z

cts

(HK7A®OL A) =
0 , else .

But this is exactly the above Corollary 5.2.7. O

Corollary 5.2.10.
Let A be a cofinitely generated Or-module with a continuous action from Gy . Then
the following sequence is exact

e |L—id

0—— Hgts

(Hg, A) — Mg/ (A)

Mg (A) — H},

cts

(Hg,A) —0.

Proof.
This is the long exact cohomology sequence of

Freid—id
_—

0—A——A®y, A A ®y, A—0.
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combined with HY (Hy, A ®9, A) =0 from Corollary 5.2.7. O

In the next step, we want to replace the above exact sequence with a sequence
of A = O[Tl k]-modules. An idea how to do this gives Nekovar in [Nek07, (8.3.3)
Corollary, p.159| but unfortunately the modules we are working with are not ind-
admissible, since A is no direct limit of finitely generated O [Gk]-modules. As in the
proof of Theorem 5.1.11 we use limits and colimits to reduce to the case of discrete
coefficients.

We want to recall the notation from [Nek07, (8.1.1), p.148; (8.2.1), p. 157] and
from the beginning of [Nek07, (8.3) Infinite extensions, p. 158-159).

Definition 5.2.11.
Let G be a profinite group, U < G an open subgroup and M a discrete O, [U]-module.
We then define the induced module to be

Id$ (M) = {f: G — X | f(ug) =uf(g) for all u € U,g € G}.

Ind$ (M) carries a G-action by (g - f)(¢) == f(og). Furthermore, if M is a discrete
O [G]-module define
UM = HOIH@L(OL[G/U],M).

v M then again carries a G-action by (o - (f))(z) = o(f(c™(z))).

Let now H <G be a closed, normal subgroup and U(G; H) be the open subgroups of G
containing H. Then, for V,U € U(G; H) with V' C U the canonical map G/V — G /U
induces Or-linear maps y M < v M under which the system (v M)y ey (q;m) becomes
a filtered directed system. We then set

Fou(M) = lim  yM.
UEW(G;H)

Similar as above, F /g (M) then also carries an action from G. If H = {1} we write
U(G) instead of U(G; H) and Fg(M) instead of Fg/qy(M). Furthermore, we set
Uk = U(Gk; Hk) and we write F1 (M) instead of Fi, /g, . This can lead to an

abuse of notation, but it will be clear from the context, which construction is chosen.
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Remark 5.2.12.
For the above situation, Nekovdr proves in [Nek07, (8.1.3), p. 149| that

nd% (M) — M, fi—> [gU s g(f(g))]

18 a G-equivariant isomorphism.

Remark 5.2.13.
In the above situation, if f € Fg (M) then it erists U € W(G; H) such that f € y M.
If then V € W(G; H) with V C U we also have f € v M as well as

f(gV) = f(gU)
forall g € G.

Remark 5.2.14.

Let G be a group and H <G a normal subgroup such that G/H is abelian. Then every
subgroup U < G with H C U is normal as well.

In particular, if additionally G is profinite and H is closed, then the elements of
U(G; H) are normal, open subgroups of G containing H. This is of great interest for
us, since our application of this theory will be G = G and H = Hg and G =T'g
and H = {1}. In both cases, the factor G/H is Ik which is abelian.

Proposition 5.2.15.

Let G be a profinite group, H <G a closed, normal subgroup, M a discrete Or[G]-
module and let U € W(G; H). Then the compact-open topology on y M is discrete and
the G-action on yM is again continuous with respect to this topology.

Furthermore, the transition maps vM — v M for V,V' € W(G; H) with V! CV
are injective, the direct limit topology on Fg/u(M) is discrete and its G-action is

continuous.

Proof.

Since U < G is an open subgroup, the set of cosets G/U is finite and therefore O [G /U]
is a finitely generated free Or-module. So in particular, Or[G/U] is compact. Then
vM = Homg, (01[G/U], M) is discrete with respect to the compact open topology
since M is discrete. To see that the action from G is continuous on y M it is enough
to see that for every f € yM there exists an open subset V' C G under which f is
fixed. Note also that G acts by left multiplication on G/U. So, let f € yM and let
J1s---,9n € G be a set of representatives of the cosets of G/U. Since the action of

G on M is continuous and M carries the discrete topology, there exist open subsets
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Vi,...,Vn C G such that g; is fixed by V; for all 1 < ¢ < n. Then f is fixed by
V =n;V;.

The statements on Fg, (M) follow immediately by taking the direct limit. So
the statement on the transition maps is left. Let V,V’' € W(G; H) with V' C V.
Then the canonical map G/V’' — G/V is surjective. Then Op[G/V'] — OL[G/V]
is a surjective Op-linear homomorphism and since Homg, (—, M) is left exact, the

induced homomorphism /M — M is injective. O

In the above situation, under the additional assumption that U is normal in G,
Nekovar introduces in [Nek07, (8.1.6.3) Conjugation, p.151] an action from G/U on
v M which will be important for us. We recall this action in the following Remark

and we prove the statements.

Remark 5.2.16.
Let G be a profinite group, U <G be an open, normal subgroup and M a discrete
O1[G)-module. For g € G and f € Ind%(M) we define Ad(g)(f) to be

(Ad(9)(f))(0) = g(f(g 0)).

This is an action from G on Indg(M) which is trivial on U, i.e. it induces an action
from GJU on Ind$(M) which we will denote also by Ad. Since both, d% (M) and
G/U carry the discrete topology, this action is continuous.

Furthermore, this action commutes with the standard action from G and under the
isomorphism Ind% (M) 22 y M from Remark 5.2.12 it corresponds to the G /U-action

(Ad(gU)(f))(oU) = f(ogU)

on yM. Then clearly the G-action on y M commutes with this action from G /U and

the latter is again continuous.

Proof.
Let f € Ind%(M) and 0,9,z € G. Then

(z - (Ad(gU) (1)) (o) = (Ad(gU)(f))(o)
=g(f(g~"ox))
=g((z- f)(g™" o))
= (Ad(gU)(z - ))(o).
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Let o denote the isomorphism from Remark 5.2.12; i.e. a(f)(cU) = o(f(c™1)). Then

a((Ad(gU) () (oU) = o((Ad(gU)(f)(e™))

Lemma 5.2.17.

Let G be a profinite group and H <G a closed, normal subgroup, such that G/H is
abelian. Then Ad induces a continuous action from G/H on Fg g(M).

In particular, with this action Fg (M) becomes an OL[G/H]-module.

Proof.
The action from G/H on Fg/u(M) is given as follows: For f € Fg/uy(M) and
U € U(G; H) such that f € yM and g € G we have

Ad(gH)(f) = Ad(gU)(f).

This is well defined, since if V' € U(G; H) such that V' C U then f € yM and for

o € G we have

Ad(gU)(f)(oU) = f(ogU) = f(ogV) = Ad(gV)(f)(aV).

The action is continuous since the above f is fixed under U/H, which is an open
subgroup of G/H.
If f is as above, z € OL[G/H] and pry;: OL[G/H] — OL[G/U] denotes the canonical

projection, then we have

Ad(z)(f) = Ad(pry (2))(£).
This again is well defined and makes Fiz (M) into an OL[G/H]-module. O

Proposition 5.2.18.
Let G be a profinite group and H <G a closed, normal subgroup such that G/H is

abelian.  Then Fg g is an exact functor, viewed as functor from discrete

OL[G]-modules to discrete Or[G/H][G]-modules.

Proof.
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The above Lemma 5.2.17 says that Fg/p is a functor from discrete Op[G]-modules to
discrete Op[G/H][G]-modules. So it is left to check that it is exact. For fixed
U € UWG; H) the functor M — yM from discrete Op[G]-modules to discrete
Or[G/U][G]-modules is exact since Or[G/U] is a finitely generated, free Or-module.

Since taking direct limits is exact as well, Fig, g is exact. O

Definition 5.2.19.

If C is an abelian category, we denote by D(C) the corresponding derived category.
As usual, we denote by DT (C) the full subcategory whose objects are the complexes,
which have no nonnegative entries and by DP(C) the full subcategory consisting
whose objects are the bounded below complexes.

If €° is a complex in an abelian category C, we denote as in [Nek07] by RI'(€*) the
corresponding complex as an object in the derived category R(C).

In particular, if G is a profinite group and M is a topological G-module we set
erts(Gv M) = RF(Cc.ts (Gv M))

as an object in R(Ab).

Remark 5.2.20.
Let G be a profinite group, H<G a closed, normal subgroup, and M a discrete Op[G]-
module. As in [Nek07, (3.6.1.4), p. 72| we define an action from G on C (H, M)
by

Ad(g)(¢)(ho, - -, hn) = gle(g™ hogs -, 9 hng)),
where ¢ € C%

n(H,M). In loc. cit. Nekovdr also proves that for h € H this action is
homotopic to the identity and therefore induces an action from G/H on RIS (H, M)
and H*(H, M) respectively.
Stmilarly, by

. Ad(g)« Ad(g) .,
Ons(G, Foy (M) == O24(G, Fyu (M) =% O3 (G, Fey (M)

we can define an action from G on C&(G, Fg/u(M)). Note that in this situation
Ad(g): Ces(G, Fagyu(M)) = Cos(G, Fg (M) is homotopic to the identity and so
the compler R4 (G, Fyp(M)) becomes a compler of OL[G/H]-modules. See also

cts

Remark 5.2.23 below.
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Proposition 5.2.21.
Let G be a profinite group, H < G a closed, normal subgroup and M a discrete
Op[G]-module. Then there is a canonical morphism of complexes

C.

cts

(G, Fo/u(M)) — Ce(H, M),
which is a quasi isomorphism. Moreover, for g € G the diagram

.
Ccts

(G, Foyu(M)) — C&s(H, M)
A’H(g)i
Cews(G, Faya(M)) Ad(g)
Ad(g)i

Ces (G Faoyu(M)) — Ces(H, M)

cts

18  commutative. So in  particular, the corresponding isomorphism

RIS (G, Fa/u(M)) — RIT4(H, M) in the derived category D (0r-Mod) is G/H-

cts

linear.

Proof.
For the proof set U := U(G; H). [NSW15, (1.5.1) Proposition, p. 45-46| says that we
have

Cc.ts(G’FG’/H(M)) = Cc.ts(Gv hﬂ UM) = hﬂ Cc.ts(GaUM)'
velu velu

With Remark 5.2.12 we then obtain

liny €5, (G, M) 2 lim C2 (G, Ind (M)).
Uelu Ueu

Shapiro’s Lemma (cf. [NSW15, (1.6.4) Proposition, p.62-63]) and again [NSW15,
(1.5.1) Proposition, p.45-46| then give us

lim G2 (G, Indfj (M) = lim C(U, M) = C&(lim U, M) = G (H, M).
Uelu Uelu Uel
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[Nek07, (8.1.6.3), p. 151] says that for U € U(G; H) and g € G the diagram

[ ]
C’cts

Avd(g)i
(G, Ind§ (M) Ad(g)

(G, Ind{f(M)) — C&,(U, M)

C.

cts

Ad(g)i
(G, Ind§(M)) —= CS

[ ]
C'cts cts

(U, M)

is commutative. Taking direct limits then proves the commutativity of the desired

diagram. O

Corollary 5.2.22.
Let M € ModiF(AKw) such that M is discrete is Op|G]|-module. Then the above
Proposition 5.2.21 together with Proposition 2.2.24 induces the I ik -linear isomorphism

RT(CY,., Tk, Fr (M) —=RI(CS, . (M)).

PK|L PK|L

Remark 5.2.23.
In the situation of Proposition 5.2.21, the morphism

Ad(g): Cos(G, Foyu(M)) — C& (G, Fgyu(M))

for g € G is homotopic to the identity (cf. [Nek07, (3.6.1.4), p. 72| respectively Remark
5.2.20) and therefore the diagram

erts(Gv FG/H(M)) — RI?

cts

Avd(g)*l lAd(g)
RI?. (G, Fg/H(M)) —— RI's(H, M)

cts

(H, M)

is commutative. The corresponding diagram for cohomology groups

Hgts(Gv FG/H(M)) — H;

cts

X:i(g)*l lAd(g)
H::kts(Gv FG/H(M)) — H; (H7 M)

cts

(H, M)

then also is commutative. This then explains that the statement from [NSW15, p.65]

coincides with the theory from Nekovdr .
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Proposition 5.2.24.
Let A = hﬂm Am be a cofinitely generated Or-module, where Ap, = ker(pym) as

usual, with a continuous action from G and set

Amn = (A ®0, An) / (TP AY @0, Ap)

My = (A ®o, Am)HK / (WEA+ Qo Am)HK

Then the following diagram is commutative and each arrow in it is a quasi isomorphism.

Moreover, the vertical arrows on the right hand side are homomorphisms of Ax-

modules.

Cés(Hi, A) = Cos(Gi, Fri (4))
ligncy(:ts(lffﬁAm) = hﬂcc.ts(GKvFFK(Am))
meN meN

hgll.&nel.?r(HKwAmn) @@eﬁr(GKaFFK(Amn))
meNneN meNneN
lig B2, | (Myny) <——=—— Ly n€%, (U, Frye (M)
meNneN meNneN
hﬂ G;K\L (MK\L(Am))
meN

In particular, the induced isomorphism RI'(CS, (Mg r(A))) = RIS (G K, Fry (A))

PK|L
in DT(Or-Mod) is Ag-linear, i.e. it is an isomorphism in D (Ax-Mod).

Proof.
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We start with the left column and we consider the following diagram

C(:ts(HKa A)

(1) |~
lim 2 (Hic, Arm)
meN
(2)| =
limy €3, (Hc, A ®0, Ar)
meN
(5)
hﬂ I&neﬁr(HKwAmn)
meNneN
(3) |~ ~[(7)
lim @e;K|L(an)
meNneN
(6)
lim €2, (M (An)
meN
(4)| =

That the morphisms (1) and (4) are quasi isomorphisms is well known (cf. eg. [NSW15,
(1.5.1) Proposition, p.45-46]). (2) and (3) are quasi isomorphisms by Proposition
5.2.9. Proposition 2.3.7 says that (5) and (6) are isomorphisms of complexes. But
then (7) is also a quasi isomorphism. So, all the morphisms in the left column of the
original diagram are at least quasi isomorphisms. The horizontal morphisms are quasi
isomorphisms by Proposition 5.2.21 and therefore the morphisms in the right column
are also quasi isomorphisms. So it is left to check that the induced isomorphism
RF(G;KlL(MK‘L(A))) = RI'%(GK, Fr(A)) is Ag-linear. But the morphisms

lim €8, (Mg (Am)) —= €3, (Mg (4))
meN

and

lim Bm €3 (M) — lm €3 (M (Am))
meNneN meN

are clearly Ag-linear and so are all the morphisms in the right column of the original
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diagram with respect to the Ag-action induced by Ad (which is the correct action in

the derived category according to Remark 5.2.23). Finally, the morphism

hﬂ @RF(G;K‘L (FKv FFK (an))) - hﬂ @RF(G;KM(an))
meNneN meNneN

is Ag-linear by Corollary 5.2.22. O

This description now has the advantage that the objects of the complexes are
A g-modules which allows us to apply the theory of Matlis duality. We give a brief

overview of this theory.

Remark 5.2.25.

We have to consider different types of group actions on Ai. First, I'x acts by multipli-
cation and G acts by multiplication through the natural projection
pr: Gg — I'x. Sometimes we also have to consider Ax as Ax-module via the

1

involution ¢, i.e. ' then acts by v-x = v~ x. If this is the case, we write A%-. Note

that this does also affect the action from Gk, i.e. Gi acts on Ay by g-x = pr(g) 'z

and T acts by v -z =~ 1z.
Additionally, if M is a Ax-module, we denote by M" the Ag-module M where I'i
acts via the involution ¢, i.e. for all v € Tk and m € M we have v-m =~y 'm. If

N is another A -module we clearly have
Homy, (M, N*) = Homp (M, N).

Definition 5.2.26.
A Ag-module with a Ag-semilinear action of Gk is a Ag-module M with an action
from G such that for all A € Ag, m € M and g € Gg we have

g(Am) = g(A)g(m) = pr(g)\g(m),

where pr: Gg — ' denotes the canonical projection (cf. Remark 5.2.25).

Remark 5.2.27.

For us it feels more natural to consider Ax-modules with a semilinear from G -action
instead of A -modules with a linear action from G, which are considered in [Nek07].
The main reason for this is that if we consider modules with a linear action from
Gi we would have to consider A with the trivial action from Gg. But this feels
unintuitive. In the text below we will always compare our results to the results of
Nekovdr in [Nek07]|. He considers A with the trivial action of Gx (cf. |[Nek07,
(8.4.3.1) Lemma, p.161-162]).
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Both concepts are linked in the following sense: If M is a Ag-module with a (linear
or semilinear) action from Gy, then for n € Z denote by M < n > the Ax-module
M with the G -action given by

g-m = pr(g)"g(m),

whith g € G and m € M and where g(m) denotes the given action of G on M (cf.
[Nek07, (8.4.2), p.161]|). Then M +— M < 1 > induces a morphism from A -modules
with a linear action from Gy to Ag-modules with a semilinear action from Gy . Its

wverse clearly is M — M < —1 >.

Remark 5.2.28.

Let M, N be Ag-modules with a A -semilinear action of Gx. Then Homp, (M, N)
also carries actions from both G and Uk (respectively A ). The action from Tk is
given by the multiplication of Ag on N (respectively M since the homomorphisms

are A -linear). The action from G is given by

(9- £)(m) = gn(fga (m))),

for f € Homy, (M, N) and m € M and where gy respectively gy denote the actions
from Gg on M and N.

Remark 5.2.29.

Let T be a topological O -module with a continuous action from G and let M be a
Ak -module with a Ag-semilinear action of Gi. Then ' acts on Homg, (T, M) by
multiplication on the coefficients and G as in the above Remark 5.2.28, i.e. by

(- H)t) = gu(flgr (1)),

for f € Homg, (T, M) and m € M and where gr and gy denote the actions from
Gr onT and M respectively.

Lemma 5.2.30.
Let T be a topological Op-module with a continuous action from Gg and let M
be a Ax-module with a Ag-semilinear action of Gx. Then the homomorphism of

O, -modules
Homyg, (T, M) —— Homy, (T’ ®o, Ak, M), fr—=0f =[t@x— xf(t)]

s an isomorphism which respects the actions from U'x and G described in the above
Remark 5.2.29 for the left hand side and Remark 5.2.25 for the right hand side.
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Proof.

The inverse homomorphism is given by
HomAK(T ®OL AK, M) —_— HOH]OL(T, M), h+——> [t — h(t & 1)]

So it is left to check that the above homomorphisms respects the actions from ' and
G k. We start with the action from Gk. For this, we have to check, that g-8r = B4
holds for all ¢ € Gk and f € Homg, (T, M). So take f € Homg, (T, M) and let
t €T and x € Ag. For g € Gx we then get

(g9-Bp)(t@x) =g(Brlg(
-1

(
(Br((g
(

For the fourth line, note that G acts semilinear on M. For the action of ' recall,
that 'k acts on both sides by multiplication on the coefficients. For v € I'r we then
get

(v Bp)(t @) =B (t @ x)
vy f(t)

Remark 5.2.31.
Let M be a A -module with a A -semilinear action of Gx. Then MY = Hom‘éti (M,L/Opr)

also carries actions from Gg and U'r. Both are given by

(g f)(m) = flg~(m)),

where g € G or in Tk, f € MY and m € M.
Note that Nekovdr considers the Pontrjagin dual of M with the I'g-action without
the involution, i.e. by (v - f)(m) = f(y(m)) (cf. the proof respectively the result
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of |Nek07, (8.4.3.1) Lemma, p.161-162]). In our notation the Pontrjagin dual of
Nekovdr of M is (M) = (M*)V.

Lemma 5.2.32.
Let M be a Ag-module with a Ag-semilinear action of Gx and n € Z. Then the
identity of M induces an isomorphism of Ay -modules with a Ay -semilinear action
of Gk

(M <n>)Y=2M <n>.

Proof.

We have to check that the identity of MV is G g-linear with respect to the above
actions. Solet ¢ € G, m € M and f € MV and denote by pr: Gx — I'x the
canonical projection. For a clearer representation we index g by the module it acts
on, e.g. if we consider the action from g on M < n > we write gyr<n>. On the left

hand side we have

(g(M<n>))v : f)(m) = f(g;/[1<n> : m)
= f(pr(g) "gy/ (m)).

In the first line we used the definition of the action from G on the Pontrjagin dual
from the above Remark 5.2.31 and in the second line we used the definition of < n >.
On the right hand side we have

((pr(9)") - (gmav - f))(m)
(pr(9)™ - £)(gps (m))
for(g9) gy (m)).

(9mrv<n> - f)(m)

Definition 5.2.33.
Let M be a Ag-module. The Matlis dual of M is defined as

Dg (M) := Homy (M, AY,).

This is a contravariant functor of Ag-modules and maps finitely generated Ag-
modules to cofinitely generated and vice versa.

Ak acts on D (M) by multiplication and if M has also a semilinear action from G,
then G acts on Dy (M) as described in the above Remark 5.2.28
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Remark 5.2.34.

A} is an injective Ax-module. Moreover, it is an injective hull of the residue class
field of Ax as Ax-module. Therefore Dy is exact and for every finitely respectively
cofinitely generated A -module the canonical homomorphism M — Dy (D (M)) is

an isomorphism.

Proof.

Since 7 — v~ ! defines an isomorphism of A-modules Axg — A%, the first statement
is [Nek07, (8.4.3.2) Corollary, p. 162]. For this, note that in [Nek07, (8.4.3.1) Lemma,
p. 161-162| Nekovaf proves that (A),)* = (A%)Y and Nekovai’s dualizing module
coincide and with (A% )Y also A, is a dualizing module. The second statement is
[BH98, Theorem 3.2.12, p. 105-107|. O

Remark 5.2.35.

As mentioned in [Nek07, (2.3.3, p.41)| L/Oy, is an injective hull for kr,. Therefore
we have a canonical isomorphism M = Homg, (Homg, (M, L/Or),L/Oy) for every
finitely or cofinitely generated Or,-module M and Homg, (—, L/Oy,) is an exact functor.
As above, the proof for this is [BHI8, Theorem 3.2.12, p. 105-107].

We need some more notation from [Nek07].

Remark 5.2.36.
Let T € Repgi)(GK) and U € Ug. Then we have two group actions on
T ®p, Op|GKk/U]. The first action, is the diagonal action from Gk

g9-(a®@zU) = (ga) @ (gaU).
The second action is the following action from G /U :
A\a(gU)(a ®@zU) =a®xg 'U.

The homomorphism Y a,uy @ xU +— > ayydy where 0 is the Kronecker delta-
function on Gk /U (i.e. it is 1 for xU and zero otherwise) defines an isomorphism
between T ®o, Or[Gr /U] and yT (cf. |[Nek07, (8.1.3), p.149; (8.2.1) p. 157|) under
which the actions described above coincide with the corresponding actions on yT (cf.
[Nek07, (8.1.6.3), p. 151]).

Definition 5.2.37.
Let T € Repgf)(GK). We set

I (T) = lm T'®o, OL[Gk/U]
Uelg
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together with the two actions from G and I'i described in the above Remark 5.2.36.
With this, we define

RFfW(KOO|K7 T) = RFZts(GKﬂ ?FK (T))

L
Furthermore, by ®rp we denote the derived tensor product over the ring R.

Remark 5.2.38.
At [Nek07, p.201| NekovdF proves

Hiy (Koo K, T) = H*(RIT, (Koo K, T)),

i.e. that the cohomology of the above complex coincides with the Iwasawa cohomology
defined in Definition 4.3.6.

Remark 5.2.39.
Let T € Repgf)(GK), then we have an isomorphism of Ax-modules with o Ag-

semilinear action of G
Ire(T) =T ®o, Nk

Proof.
Since T is finitely generated and Oy, is a discrete valuation ring, T is finitely presented.
Therefore we have

@ T ®o, OL[Gk /Ul =T ®0, Ak
Uelg

as Op-modules. Gk acts on both sides diagonally and ', acts on the left hand
side via Ad (which technically means via the involution) on the right hand term

O1|Gk/U]. Since I'k acts on Al also via the involution, the claim follows. O

Lemma 5.2.40.

We have an isomorphism of Ax-modules with a A -semilinear action of Gy

(A%)" = Fr (L/OL) (Z lim HomoL(oL[GK/U]aL/OL)> :
Uelk

Proof.

Or[Gk /U] is compact for U € Uk, therefore Homg, (O1[Gk /U], L/Or) is discrete

and so %UEUK Homyg, (O1[Gk /U], L/Oy) is discrete too. This means that every

map with source ligeruK Homyp, (Or[GKk /U], L/Or) into any topological space is
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continuous. We then compute (as Op-modules)

Hom§? (Fy, (L/0Or), L/O) = Homg; ( lim Homo, (0r[Gk /U], L/OL),L/OL)

UelUg
=Homg, ( lim Homy, (0L[Gk/U],L/OL),L/OL)
Uelyk
~ lim Homg, (Homo, (OL[Gx /U, L/0L),L/0L)
Uelg
> lim O4[Gic/U]
Uelg
=Agk.

At the third equation, we used the identification
OL[GK/U] = HOHloL(HOHloL(OL[GK/U], L/OL), L/OL)

from Remark 5.2.35. Now we head towards the action from I'y. For v € I'g,
f € Hom@® (Fr (L/OL),L/OL) and h € Fr, (L/O) we have

(v- F)(h) = fF(771 - h) = f(Ad(y 1))

for all € Fr,(L/Or). Going through the above isomorphisms shows that this
results in an action from ' on Ak via the involution, i.e. we have an isomorphism
of Ag-modules

Hom{?® (Fr, (L/OL),L/Or) = A%

With the above notation, we have for g € G

(g-F)(h)=f(g~"-h) = f(hog),

since G acts trivial on L/Op by definition. Therefore the above isomorphism is also

G k-linear. ]

Remark 5.2.41.

The above result differs a bit from Nekovdr’s result in [Nek07, (8.4.3.1) Lemma,
p.161-162| since Nekovdr’s considers Ax-modules with a Ag-linear action from
Gk and therefore he considers Ay with a trivial Gx action (cf. Remark 5.2.27).
Furthermore, his Pontrjagin dual and ours for Ag-modules differ in the action of I'k

by an involution (cf. Remark 5.2.31). For a better comparison, if we consider Ax
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with the trivial action from Gk the result of loc. cit in our notation is
(AY) = Fr (L/OL) <1>.

This is equivalent to
(A%)L < —1>= FFK(L/OL)

and for the left hand side we obtain

Af) <—-1>=(Ay)V <-1>
= (A < —-1>)Y
=((Ag <1>)H)".

In the second line we used Lemma 5.2.32. But this means that Nekovdi’s result
translate into ours since we considered Ax with the action from Gy given by the

canonical projection pr: Gg — I'k.

Lemma 5.2.42.
Let T € Repgi)(GK). Then we haven an isomorphism of Ax-modules with a A -
semilinear action of G :

Fro(T") = D (Tr, (T)).

Proof.
This proof follows the idea of [Nek07, (8.4.5.1) Lemma, p. 163].
We have

Fr (TY) = lig Homo, (OL[Gk /U], T")
Uelk
= hﬂ Homyg, (01[GKk/U],Homg, (T',L/Or,))
UelUgk

= h%Dl HOIH@L(OL[GK/U] Koy, T, L/OL)
Uelyk

= hg HOmOL (T, HOm@L(OL[GK/U], L/OL)).
UelUgk

In the third and fourth line above we used the usual tensor-hom adjunction (cf.

Lemma 2.2.29). The above isomorphism is both, G- and I'k-linear. To see this, it
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is enough to show that for U € Uk the isomorphism

Homg, (OL[Gk /U], TV) Homyg, (T, Homy, (O[Gk /U], L/OL))
fr af = [t [z f(z)@)]]

is Gg and G /U-linear. We start with the action from Gg. Let t € T and
z € OL[Gk/U]. Let furthermore f € Homg, (O[Gk/U],TV) and g € Gk. The
action of Gk on the left hand side is given by

(9- H@)(®) =g(f(g~ (@)®) = Flg~ (@) (g~ ().

Let h € Homg, (T, Homg, (Or[Gk /U], L/Or)). Then the action of Gk on the right
hand side is given by

(9-h)()(x) = g(h(g™(t)(z)) = h(g~ () (g~ (2))-

Therefore we obtain

X

(9-ap)(®)(@) = aplg™ ()™
= flg (@) (g™ (1)
=(g- @)@
= a(g.p(t)(z).

For v € Gk /U the action of Gx /U on the left hand side is given by
(v- D)) = FAd(y)(@)(2)

and on the right hand side by

(v - W)(®)(x) = Y(h()(@)) = h()(Ad(v " (2))).

Analogously to the above computation we then obtain

(v- ap)(®)(x) = ap(t)(Ad(y ") (@)
FAd(y)(

= (v @)@
= a(y.p)(t)(@).

Then, as in [Nek07, (8.4.5.1) Lemma, p. 163], since T is finitely generated over O,
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we have

lim Homg, (T, Homg, ((OL[GK /U], L/OL)))
Uelgk

= Homg, (T, lim Homy, (OL[Gk /U], L/OL)).
Uelg
With the above Lemma 5.2.40, which says that we have an isomorphism of A g-modules
with a Ag-semilinear action of Gx i, o Homg, (OL[Gk/U],L/OL) = (A%)Y, we
then deduce

Fr, (T) = Homg, (T, (A%)")
= Homy (T ®0, Ak, (A%)Y)
= HomAK (T ®@L LK’ A}/()

= D (I (1))

In the second line we used Lemma 5.2.30, in the third line Remark 5.2.25 and in
the last Remark 5.2.39. The references for the second and last line also show that
the isomorphism is Gg- and I'k-linear. For the first line, this is part of this proof
and in the third line it is obvious. So the above homomorphism is both G- and

I'k-linear. O

Remark 5.2.43.

Again, the above result differs slightly from the analogous result of Nekovdr (cf. [Nek07,
(8.4.5.1) Lemma, p.163]). This is a consequence of the difference pointed out in the
above Remark 5.2.41. Translated to our notation, Nekovdi’s result from loc. cit. then

is that there is an isomorphism of Ax-modules with a Ay -semilinear action of Gg
Fr ((TY)") = Homy (T, (T)", (Ak)")-

Note that Nekovdi’s original result is formulated for Ax-modules with a linear action
from Gg. But as pointed out in Remark 5.2.27 both concepts are linked by the shifts
< 1> and < —1 > respectively. So to be precise, Nekovdi’s result is the above shifted
by < —1 >. If we apply this shift, we would have to invert it below in order to compare
Nekovdr’s result to our result. Since I'x acts trivially on T and therefore also on TV
we have (TV) = TV and we have a canonical isomorphism of Ax-modules with a

Ay -semilinear action of Gi

Homup (?FK (T)L7 (A}/(')L) = Homy (?FK (T)v A}/() = m(?FK (T))
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Combining the above identifications then gives us an isomorphism of Ak -modules with

a Ag-semilinear action of Gk

(FFK (T\/)) = W(‘GFFK (T))a

which is exactly our result.

Lemma 5.2.44.
Let T € Repgi)(GK). We then have an isomorphism

RFI.W(KOO‘Kﬂ T) = m (Rrgts(GfO FFK (T\/)(l))) [_2]’
For the cohomology groups we then have for all i > 0 an isomorphism of Ax-modules

D (Hiy (Kool K,T)) = HZ S (Gre, Fro (T (1)) = HE (Hie, TV (1))

cts cts

Proof.
This is [Nek07, (8.11.2.2); (8.11.2.3), p. 201], but note that the shift of our complex is
outside Dx(—) and that we have

Fr.(TV) = Dg(Frg(T)) (cf. Lemma 5.2.42) since we have a slightly different
convention for the involved action of I'g. In particular, this is Lemma 5.2.42 together
with [Nek07, (5.2.6) Lemma, p.92]. The last isomorphism of the cohomology groups
is Proposition 5.2.21. O

Proposition 5.2.45.

LetT € Repgf (Gk). Then the sequence

Dx —id
K (PK|L) D (M) —= HZ. (Koo |K, T) — 0

0— Hllw(Koo’K, T) %E(M)

is exact, where M = M (T(1)).

Proof.
With A := TV(1) we deduce from Proposition 5.2.10 and Proposition 5.2.21 that the
sequence

pr|L—id

0— H([:)ts(GKa Fr (4)) = MK|L(A)

MK\L(A) - Hclts(GK7 FFK (A)) —0

is exact and Proposition 5.2.24 says that it is a sequence of Ax-modules. Applying
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Dk (—) then gives the exact sequence

W(W\L)—id

0 — D (He (G, Fri (4)))
D (Mpr(A4))

D (Mg (A))
W(Hgts(Gfﬁ FFK (A)))

(cf. Remark 5.2.34). Lemma 5.2.44 translates this sequence into the desired one. [
This sequence looks similar to the sequence

1y ¥—id _
0 = Hy, (Koo K, T) = Mg (T(771)) —= Mg (T(771)) = Hf,, (Koo K, T) =0

from Theorem 4.3.13 where 7! = XLTX(:_ylc and T € Repgf)(GK). In order to

compare these sequences, we prove the following.

Lemma 5.2.46.
Let n € N. We have Q}AK\L/T(?Q}AK\L = (Ag L/} AkL)" and a T-linear inclusion

QAIAK\L/WEQAIAK\L DK(AK\L/T‘-ZAK\L)

Proof.
The isomorphism is a reformulation of Remark 4.2.16. For the inclusion using the

tensor-hom adjunction (cf. Lemma 2.2.29) we obtain

HOIHOL (AK|L/7TEAK|L7 L/OL) = HOI’HOL (AK|L/7TZAK|L ®AK AK,L/OL)
= HOH]AK(AK|L/7TZAK|L, HOI’I]OL(AK,L/OL)).

So we have to check that under this isomorphism Hom§? (A g /77 Ak, L/OL)
is sent to Homy, (A /77 Ak, (Ax)"). For this, recall the above isomorphism
precisely: Let f € Homcotz (AgL/77 Ak, L/OL), then f is mapped to the element

[a = fo=[A = F(Aa)]]

in Homy, (Agr/77 Ak, Home, (Ak, L/OL)). For a € Ag|;/n] Ak, the homo-

morphism f, then is the composition

n f
A —= Agp /7 Ak —L/0g
AH————=)a
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of continuous maps, i.e. f, is continuous too and we get the desired inclusion
Hom§® (A k1 /7} Ak, L/Or)—— Homp, (Ag /7] Ak, (Ak)Y).

It is left to check this inclusion is I'k-linear. For f € Homcotz (AgL/77 Ak, L/OL)
as above, we denote by ay its image in Homy , (Ag| /77 A gL, (Ak)Y). Let v € Tk,
a € Agr/Tf Ak and A € Ag. Then we have

(v ap)(a)(X) = v(ar (v~ (a))(N)

In the first and the third line we used the definition of the action on the homomor-

phisms. In the second line we used that I'ic acts trivially on L/Oy, by definition. [

Definition 5.2.47.
Let M be a toplogical A g|;-module with a continuous and semilinear action from

I'x. We define
D(M) = Homa,, (M, Q}AKM ®Ag . BriL/Ak|L)-
And we define the T'g-action on D(M) to be
(v F)(m) =~(f (v (m))),

where I'x acts diagonal on the tensor product.

Remark 5.2.48.
By Proposition 4.2.29 we can identify D(M), for M as above, with

Homa, , (M,Bg/Ak|L(xLr))-

Lemma 5.2.49.
Let M be a discrete A ,-module with a continuous and semilinear action from Ik

such that M = hgm M,, where M,, = ker(;z,ran). Then we have a I' g -linear inclusion

Proof.
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For m € N we obtain with the tensor-hom adjunction (cf. Lemma 2.2.29)

Dg (M) = Homp, (My,, (Ak)Y)
= Homy, (M, QAkL AgL/mL AkL, (Ax)Y)
&~ HomAKlL(Mm, Hompy (AK|L/7TZLAK|L/7 (AK)V))-

Lemma 5.2.46 then implies, that there is an inclusion
Homa ., (M, 04, /T, ) Dic(Mon).
But since 7'M, = 0 it is
Homa .\, (M, Q}AK‘L/W?Q};K‘L) = Homa |, (M, Q};ML ®Ag . BriL/AK|L):

i.e. we have an inclusion D(M,,) < Dg(My,). Since Hompg(—, X) commutes
with limits for arbitrary rings R and R-modules X, we get the desired inclusion
D(M) — D (M) by applying limits. O]

Lemma 5.2.50.
Let A be a cofinitely generated Op-module with a continuous action from Gg. Then

we have
DM (A)) = My (AY (xrr))-

This isomorphism respects the action from I'k.

Proof.
As usual we write A = limg Am with Ay, = ker(pzm ). Lemma 4.2.17 then says that

we have an isomorphism
Q(MML(Am)) = MK\L(Am)V'

Proposition 4.2.35 implies that this isomorphism is I'g-linear. Remark 4.3.4 says

that we have a I'k-linear isomorphism

MiL(Am)" = Mg ((Am)Y (xor))-

Combining these results gives us the I'k-linear isomorphism

DMz (Am)) = Mg ((Am)” (xur))-

Applying limits now gives the desired result. O
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In the Proposition below, we are using a result of Section 4. Since K|L was

unramified in this chapter, we also have from now on to assume that K|L is unramified.

Proposition 5.2.51.
Let T € Repgi)(GK) and set

CYL (Mg (T(771)) = €y (DM (T (1)))[-1].

Then the inclusion of complezxes

€, (M (7)) = €3 (D Vg (T (1)) 1]
H

D (€ (M (T(1))))[-2]

s a quast isomorphism. So in particular we have an isomorphism in the derived
category DP(Ax — Mod)

RI(C) (M (T(771)))) = RN, (Koo |K, T).

Proof.
With TV(1) = T(—1)V, the above Lemma 5.2.49 and Lemma 5.2.50 imply

Mg (T (77 1) —=> DM (T (1)) D (M (T (1))

The cited lemmata also show that both homomorphisms are I'yk-linear. Let
M := Mg (T (1)) then Proposition 5.2.45 together with Theorem 4.3.13 implies the
commutative diagram with exact rows and Ag-linear vertical homomorphisms

_ id
0— HL (Koo|K,T) —>Dg (M Dxc(y)- M) — H2 (Koo|K,T) —0

| ﬁ . J |

0 H}\ (Kool K. T) — My (T(r71) 2= My (T(r ) —= HE, (Kool K. T) 0.

This gives the desired quasi isomorphism. The second statement then follows from
Lemma 5.2.44 by using Proposition 5.2.24. O
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Theorem 5.2.52.
LetT € Repgf) (Gk) and let K C K' C K+ an intermediate field, finite over K, such
that T = Gal(Koo|K') is isomorphic to some Z;,. Then we have an isomorphism
in the derived category DT (0r-Mod)
L
RFfW(KOO’K, T) A ger O 2RI (GK/,T).

cts

In particular, we have
L
RI(C) (Mg L(T(77)) ®a, O = RTE(Gier, T).

Proof.

The first assertion is [Nek07, (8.4.8.1) Proposition, p.168|. Note that we have
an isomorphism RI'f, (Koo K',T) = RI}, (Kxo|K,T) in DT (Ag/-Mod) since the
intermediate fields of K |K’ are cofinal in the intermediate fields of Ko |K. The

second assertion then is an application of Proposition 5.2.51. O

Remark 5.2.53.

It is maybe possible the generalize the above Theorem 5.2.52 to the case of general 'k .
For classical (p,T)-modules one proves the analogous statement first for procyclic
and then for general T' (cf. [Col04, Proposition 5.3.11, Corollary 5.3.12, Proposition
5.3.13, Proposition 5.3.14, p. 101-103] ).

The above Theorem 5.2.52 gives the desired comparison of continuous cohomology
of a representation 7" with a complex of (p K|, L'k )-modules related to the operator
1. Unfortunately, the above statement is only for the continuous cohomology of a
subgroup of Gx. The following Corollary manipulates the given representation to
get the continuous cohomology of the whole group G . In fact, this is an application

of Shapiro’s Lemma.

Corollary 5.2.54.
LetT € Repgf) (Gk) and let K C K' C K an intermediate field, finite over K, such

that T == Gal(K|K') is isomorphic to some Zy,- Then we have an isomorphism
in the derived category DT (0r-Mod)

L
RFfW(Koo’K, T) ®AK, O = RFZts(GKaT®OL OL[GK/GK/])

Proof.
Recall from Remark 5.2.36 the object T'®o, O[GKk/Gk| together with the diagonal
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action from Gg. Since Op[Gg/Gk/] is a finite free Or-module we then get an
isomorphism in DT (O7-Mod) (cf. [Nek07, (8.2.2), p.158] and Remark 2.3.12)

1%

=

RFZts(GKaT®OL OL[GK/GK/]) Ii RF;tS(GK,T/ﬂ'ZT XKoy, OL[GK/GK/])

)

12

2
z|E

erts(GK/7 T/WZT)

1%

RI%(Gk:, T).

Together with Theorem 5.2.52 this is exactly the claim. O

Remark 5.2.55.

We want to give a more concrete statement of the above Theorem 5.2.52. So let as
there T € Repgi)(GK) and K C K' C K, an intermediate field, finite over K, such
that ' = Gal(Koo| K') is isomorphic to some Zy,. Let furthermore 1,...,7 be a
set of generators of T'r. The Koszul-complex Ko(Ag:) of Agr then is the complex

1 d1

dy—
00— A" Agr — 2 AT Ager Agr oL 0,

where /\Z Ag denotes the i-th exterior algebra of Ag+ and

i
di(xy N+ Nxy) = Z(—l)j+1pr(a:j)x1 N NT5 A Ay
j=1

Here (/—\) denotes that this entry s omitted and pr denotes the projection
Agr — A /(1 — 1,...,9 — 1) =2 O (¢f. [Stal8, Section 15.28|). Under the
(uncanonical) isomorphism A+ — Op[X1,..., X, 7 —1 — X; the above projection
becomes the projection to degree zero. Then by [Mat87, Theorem 16.5, p. 128-129] the
Koszul-compler Ko(Ag) of Ak is a free resolution of O, and therefore (cf. [Stal8,
Section 15.57, Definition 15.57.15]) RF((‘?T’/)(MKM(T(T_I))) GLE)AK, Or, is represented
by the complex
(C3, (Mg L(T(r71))) @, Ke(Ax)

which then is isomorphic to the complex

_ (Yp—id)®id
Tot (MK|L(T(T 1)) ®AK’ KO(AK') )

Ko(9)—id

Tot (Ku (M (T(r1))
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Here KoMy (T(771))) denotes the Koszul-complex of MK/‘L(T(T_I)) which is
defined in an analogous way to the Koszul-complex of Akr. This last complex then is

the generalization of the v-Herr complex from the classical theory.






CHAPTER 6

REGULATOR MAPS

In this chapter, we want to define a regulator map, similar to the one in [LZ14a,
Definition 4.6, p. 16] and deduce similar properties as in loc. cit. in the following.
Besides [LZ14a] (and its previous version [LZ14b]) our main reference for this chapter
will be [SV19].

6.1 NOTATION

We keep the notations from the previous chapters and introduce some new notations,
similar to the one of [LLZ14a] which will be useful in order to imitate the concepts
from there.

First we want to mention that deviant from the previous chapters, we will henceforth
denote representations over rings of integers by the letter T" while we use V for
the corresponding representation over the corresponding quotient field. We do this,
because we wanted the notation to be consistent with the other articles in this field.
As in [LZ14a, p. 6] we will work in this chapter mainly with free representations. The
category of finitely generated and free Op-representations of Gx will be denoted by
Repgf’f)(GK). Due to the equivalence of Theorem 3.9.1, the (pk|r, 'k )-modules
of interest will be those which are finitely generated free as A |7 -modules and we
denote the corresponding category by Modit”lﬁ(A K|L)-

Let F be a fixed unramified extension of L, F,|F be unramified of degree p" and
let Foo = UpFy,. Note that F), is uniquely determined. Denote the Galois group of
F|F by T and the one of F,|F' by T, |p. Note that since F,|F is unramified, its
Galois group is isomorphic to the Galois group of the extension of the corresponding
residue class fields and therefore it is Tp, |p = Z /p"7Z. This Galois group is generated

by the lift of the gp-Frobenius from the residue class extension and will be denoted
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by op,. It clearly is op,|F, , = oF, , for all n > 1. Let Furthermore O, be the
ring of integers of F,, and Op_ = U,0F,.

We want to assemble the whole situation in the following diagram:

Qp
|
FooLo
F Loo
|
Fy
T
TFn |F LTL T'p

Remark 6.1.1.

Don’t be confused by the notation, when comparing this section to |LZ14a|. In |LZ14a,
Proof of Proposition 3.6, p. 10-11] they define U to be the Galois group of Foo /Qp and
U, to be the one of Fs|F,,. But since the groups U, do not occur in our applications,
but the groups U /U, do, we decided to let our Yr,|r be their U/U, to simplify notation
and to be consistent with the definitions we made in previous section (e.g. we defined
[p, i = Gal(Ly,|L) at the beginning of Section 3.1).

Since we will consider different Iwasawa algebras below, we want to establish the

following notation: If G is a profinite group and R a commutative ring, we set

AR(G) = lim RIG/H),
H<G

where the projective limit runs over all open normal subgroups of G. If R is a

topological ring, we endow R[G/H] with the product topology and Ar(G) with the

topology of the projective limit. Sometimes, this is called the weak topology (cf.
[LZ14a, p.3)).

6.2 CRYSTALLINE AND ANALYTIC REPRESENTATIONS

In this section we want to give a brief overview over some more of Fontaine’s period
rings and on de Rham and crystalline representations. Since the proofs in our situation

are the same as the corresponding ones in [FO10, Chapter 5 and 6, p. 135-198|, we
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will not give a full proof of any of the statements but we will explain how the
constructions from loc. cit. transform to our situation. Most of the rings appeared
first in [Col02]. But to be consistent with the notation and to simplify comparisons,
our main references will be [Sch17] and [FO10].

From [Sch17, Lemma 1.4.18, p.53-55] we deduce the surjective homomorphism
@OC% . W(OC;)L — O(CI::?

and in [Sch17, Lemma 2.1.3, p. 86| Schneider proves that its kernel is generated by

the element & := 7(7z) — 7, where

is the usual Teichmiiller Lift (cf.  [Schl17, Lemma 1.1.15, p.15-16]) and
7L = (m, mod m0c,)n € OC';) with m9 = 7, and ﬂ'gﬁrl = 7, for all n > 0 (cf.
[Sch17, p.85]). As in [FO10, p.92] GOC; then clearly extends to a surjective homo-
morphism W(Oq} )o[l/7] — Clb) which we again denote by @o% . Its kernel then
again is generated by £. We then define

By = &i% W(Oc; )L[1/72]/ ()",

Bar = Bjg[1/¢]-

Remark 6.2.1.
In [Col02, Proposition 7.12, p.61] Colmez shows that the above defined ring B:{R
coincides with the classical de Rham period ring, defined by

lim W (O, )/ (€)",

neN

where E generates the kernel of the surjective homomorphism W (Og ) — Ops (cf.
p P
[FO10, Definition 5.13, p.93]). Note that Colmez denotes the classical ring by Bl

and our ring defined above by BérRL' Since they coincide, this justifies our notation.
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Remark 6.2.2.
The operation from Gr, on W(ch) carries over to Bar and we have (cf. [FO10,
Proposition 5.24, p. 96])

(Bar)“* = L.

The role of the element 7. = [¢] — 1 from [FO10, p.79] in our situation plays
the element wg. In particular, it fulfills ©¢ , (wg) = 0 (cf. [Schl7, Lemma 2.1.12,
P
p.91-92]). Therefore, analogously to [FO10, p. 94|, we define

trr = logrr(we) € B;R

As in [FO10, Proposition 5.20, p.94-95| one then can check that t;r generates the
maximal ideal of By, using v(w) = oLt from [Sch17, Lemma 1.4.14, p. 50].
Following [FO10, Definition 6.1p. 113-114| we then define

N é_n
O parss

n=0

N € Ny, ay, € W(OC?})},

[ B 0 n A0
ACI‘IS '—@A /p A

cris cris»
neN
1
+
Bcris — Acris |:p .

One then can show (cf. [FO10, Proposition 6.6, p. 115]) that there exists another
generator t of the maximal ideal of Bgqr such that t € As. Then we can make the
same definition as in [FO10, Definition 6.7, p. 115], i.e. we set

1 1
Beis == Bc—;is |:t:| = Acris |:t:| .

Remark 6.2.3.

As before, the action from Gy, restricts to Beps and we have
(Bcris)GL = LO-
As usual, we define

ACris,L = Acris ®OL0 OL7
B-‘r — Bt

cris,L * cris

Bcris,L = Bcris ®LQ L.

®L0 L7
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One can show t11 € Beis . For V e Rep(Lfg)(G 1) we then also define

Dar(V) = (Bar ®q, V)GL

Deris(V) = (Baris ®g, V)
®cris,L(V) = (BCI‘iS,L L V)GL - (BCriS ®Lo V)GL

G,

Then Dgr(V') is an L-vector space and we have (cf. [FO10, p.98|)
dimz Dgr(V) < dimg, (V).

Similarly, Deis(V') is an Lo-vector space and it is (cf. [FO10, p. 131])
dimp, Deris(V') < dimg, (V).

If in the above line holds equality, we say the representation V' is crystalline. Clearly,

Deris,r.(V') is an L-vector space with
dimy, Deis (V) < dimpy Deris(V) < dimg, (V).

We also want to recall some notation from [SV19|. For this, recall from [FO10, p. 99|
that for V € Rep(Lfg)(G 1) the K-vector space Dgr (V') has a filtration, which we will
denote by Fil'Dgr(V) and as in [FO10, p. 100] we set

Fil'Dar (V) = Fil'Dgr (V) /Fil ™ Dgr (V).

The Hodge-Tate weights of V then are the i € Z with griDgr (V) # 0. We say
that V is positive if all the Hodge-Tate weights are < 0. Furthermore, we say that
V' is analytic if the filtration on Dgr (V) is trivial for every maximal ideal m of

L ®q, L which is not the kernel of the homomorphism L ®gq, L — L induced by the

multiplication. We denote the full subcategory of Rep(Lfg)(G 1) of crystalline and

cris,an

analytic representations by Rep; "(Gp).
A free Op-representation T € Repgf’f)(G 1) is called crystalline respectively an-
alytic respectively positiv if V := T ®¢, L = T[1/n] is crystalline respectively

analytic respectively positive. The corresponding full subcategory of Repgf’f)(G L)

cris,an

of crystalline and analytic Op-representations is denoted by RepoL (Gr).

Furthermore, set Qg = and for a finite extension X|L we denote by

an -+
Mo %F(AZK\L

[Tr]owe
we

) the category consisting of finitely free A;EIL—modules N, together
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with a g z-linear homomorphism ¢x: N — N[1/Qy] such that

1®en: Af}JE|L Px|L ®A;"<‘L N[l/Qqﬁ} — N[l/Q¢]

is an isomorphism and with a semilinear I'sc-action, commuting with ¢ such that the
induced action on N/wyN is trivial. We call such a module an analytic (pxr,, ['x)-

+
module over A:,qL.
Let X|Q, be a finite extension and E|X be an extension, such that F is complete.
Let furthermore W be an n-dimensional X-vector space and B C W be a closed

polydisk, i.e. there exists a w € W and an s > 0 such that
B={beW]||b—w| <s}

For W = X™ we could choose O% for B, where Ox is the ring of integers of X (this
will be the most interesting of our applications, especially in the case n = 1). A
function f: B — E is called locally X-analytic (with values in E), if for every
b € B there exists an r > 0 and a convergent power series f, € X[X1,..., X,] such
that

fla+b) = fi(a)

for all @ € B with ||w — b||w < r. In our applications X will be L or Q,. Note that
a locally Qp-analytic function needs not to be locally L-analytic. We will denote the
E-vector space of all E-valued locally X-analytic functions on B by CX**(B, E).
We then also get the notion of locally X-analytic functions on Lie groups over X by
an analogous definition locally on the charts. If G is a Lie group over X, we denote
by Dx (G, E) the continuous dual of the E-vector space CX31(G, E), i.e.

Dx (G, E) = Hom$*(CX"(G, E), E).

Dx (G, E) is called the space of E-valued locally X-analytic distributions on
G. As in [LZ14a, p. 3] we endow Dx (G, E) with the topology of the inverse limit.
The most interesting case for us will be when G is (a subgroup of) the group of units

of the ring of integers Ox of X.

Remark 6.2.4.

Let E|Q, be an extension, such that E is complete. We want to recall from [LZ14a,
p. 3| a way to think of the Iwasawa algebra and the distributions in one of the cases
we are interested in. Let G = A X Zy, where A is a finite abelian group. Let

Y1, -5 Yn denote a set of generators of the Zy; factor. Then Aoy (G) is isomorphic
to Op[A][X1, ..., Xn] via sending v; — 1 to X;. The space Dg, (G, E) then identifies
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with the subring of E[A][X1,...,X,] consisting of those power series converging on
the disk |X;| < 1.

6.3 ON INTEGRAL NORMAL BASES

In their course of proving |[LZ14a, Theorem 4.7, p.16-17|, they need a special
description for integral normal bases and of the normal bases of the corresponding
residue class fields. Since these results are split over three different sources, we collect
them here and add some details. First, we fix some notation and then fill in some

details in the original proof of the important input, which is [Wae91, p. 203—204].

Definition 6.3.1.

Let E|F be an extension of degree ¢ of finite fields of characteristic p, let ¢ be the
cardinality of F', let € F and denote by ¢ the ¢-Frobenius on both, £ and F'. The
polynomials f € F[X] with f(o)(xz) = 0 are called the annihilating polynomials
of = with respect to o.

Furthermore, we call an element z € E a normal basis generator of E|F if
(z,0(x),...,07 (z)) is a F-basis of E.

Remark 6.3.2.

Let E|F be an extension of degree t of finite fields of characteristic p, let q be the
cardinality of ', let x € E and denote by o the q-Frobenius on both E and F'. Then
the annihilating polynomials of x with respect to o clearly form an ideal and therefore,
since F[X] is a principal ideal domain, it exists a unique monic generator of this
ideal. We call this generator the minimal polynomial of x with respect to o

and denote it by f,. Note that these minimal polynomials need not to be irreducible.

Now we want to fill in a detail into [Wae91, p. 203-204|, precisely we want to give a
proof of the next-to-last sentence in the proof. The idea of this is to imitate to prove
at [Wae91, p. 126] as it is stated on top of [Wae91, p.204].

Lemma 6.3.3.

Let E|F be an extension of degree t of finite fields of characteristic p, let q be the
cardinality of F', let x,y € E and denote by o the q-Frobenius on both E and F. If
fz and f, are relatively prime, then we have fyfy = foyy. In particular, if f € F[X]
such that f(o)(z+y) =0 then f(o)(z) = f(o)(y) = 0.

Proof.

Since (fyfy)(o) is additive we have

(fofy)(0)(@ +y) = (fafy)(0)(2) + (fofy)(o)(y) =0
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and therefore fyiy | fofy by definition. Let g € F[X] such that fo1yg9 = fofy-

Now let P € F[X] be a prime divisor of f, and let e € N be the biggest exponent
of P such that P¢| f,. Since f, and f, are relatively prime, we have Pt f,. Then
clearly

(fz/P")(0)(x) # 0

for all 1 <n < e and with P{ f, we obtain

((fefy)/P")(0) (2 +y) = ((fefy)/P")(0)(x) # 0

for all 1 < n <e. We show now, that we then already have P¢ | fy4,. Let f € Ny
with f < e which is the biggest exponent of P such that P/ | f,;,. This means that
P*=f | g and therefore

0= (foryg/P ) (0) (@ +y) = ((fo )/ PN 0) @ +y) = ((fofy) /P T)(0) ().

So we get (f./p°~/)(0)(x) = 0 and therefore e = f. Imitating this for all prime
divisors of f; and f, then implies f; | fot+y and fy, | fo4y and since f, and f, are
relatively prime also fo fy | foty- O

The statement of [Wae91, p.203-204] is summarized at [Sem89, Lemma 1, p.507],

which we want to recall here.

Lemma 6.3.4.

Let E|F be an extension of degree t of finite fields of characteristic p, let q be the
cardinality of F' denote by o the q-Frobenius on both E and F. Then an element
x € E is a normal basis generator if and only if the minimal polynomial of x with

respect to o is Xt — 1.

[Sem89, Lemma 4.1, p. 518] is also one input, we need. We state it here and explain
the details.

Lemma 6.3.5.

Let E|F be an extension of degree t = p" of finite fields of characteristic p, let q be the
cardinality of F' and denote by o the q-Frobenius on both E and F. Then an element
x € E is a normal basis generator if and only if TrE|F(x) # 0.

If t is not a power of p and x € E is a normal basis generator, then we still have

Trgp(x) # 0.

Proof.

Let x € E be a normal basis generator and ¢ not necessarily a power of p. Since
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Trpr is a polynomial of degree ¢ — 1 in o it immediately follows from Lemma 6.3.4
that Trgp(z) # 0 (since its minimal polynomial with respect to o has degree ?).
For the other direction, let ¢ = p" and x € E such that Trgp(z) # 0. We then have

r—1
XP—1=(X-1)" = <p2 X"> (X —1).
=0

Since o?" = idg and Trgp(z) # 0 and since X — 1 is the only prime divisor of
XP" — 1, it immediately follows that X?" — 1 is the minimal polynomial of = with

respect to o. O

Then, |Pic18, Theorem 4.12, p. 22| proves in some cases that there are also integral

normal bases. Unfortunately, we have from now on to assume p # 2.

Theorem 6.3.6.

Let M|L be a finite, unramified extension with Galois group G and [M : L] = p" for
some v € N. Let x € Oy such that Tro,, |0, (v) Z 0 mod 7y, then x is an integral
normal basis generator, i.e. (g(x) | g € G) is an Or-basis of Opr and x mod 7y, is a

normal basis generator of the extension kpr|kr .

Proof. This is |Pic18, Theorem 4.12, p. 22]. O

6.4 YAGER MODULES

In this section, we follow the idea of [LZ14a, Section 3.2, p.10-11]. Precisely, we
follow the earlier version [LZ14b, Section 3.2, p.7-11] which contains more details
and which imitates the construction of [Yag82, §2|. We add some details and explain

how this fits in our situation.

Definition 6.4.1.
As in [LZ14b, p. 7], on the ring O, [T, |r] we define the following group actions from

TFn|F:
A1: Tgp X O, [Tk, F] Or,[Tr,F]
(hy 22 zg-9)! > hlzg) g,
9€ T p, P 9€Tp,|F
Az: Tg p X OF, [Tk, F] Or,[Tr,F]

(hy X2 xg-9) Y. xg-(hg)= > mpog-g.

9€Tp,|F 9€Y R, |F 9€T R, |F
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The following Remark lists the properties of the above group actions, which are

analogous to the ones listed in [LZ14b, p.7|.

Remark 6.4.2.

For every h € Y, |p the induced map Aq(h, —) on Op,[Y g, |r] is an automorphism
of rings, but in general it is not O, -linear (though it is Or-linear). The induced map
Ao (h,—) is O, -linear but it is in general no homomorphism of rings.

Furthermore, A1 and Ao commute with each other, in the sense that for every
h,k € Yp,\p and r € OF,[Yf, |p] we have

A1 (k, Ag(h,r)) = Ao(h, A (k, 7).

Proof.

Let h € T, p. That both, Aq(h, —) and Ag(h, —), are additive is clear since addition
in O, [T, r] is just adding the coefficients. For the multiplicativity of Ay (h, —) let
>.zg-gand Y y,-gbein Op,[Yg, | and compute

Al D zgeg| [ DD weg

9E  py | F 9€T R, |F

= A1 | h, Z Zwayb g

= Z h Z TalYp | - 9

QETFMF [lb:g

= > | D hl@a)hw) | -9

geTFn |F ab:g

= Z h(zg) - g Z h(yg) - g

9€TF,|F 9€TF,|F

=Ap | h, Z zg-g | A1 | A, Z Yg " g

gGTFn‘F geTFn\F

To show that Aj(h, —) is an automorphism of O, [T f,|r] it then remains to show
that Aj(h, —) is bijective. But this is clear, since h is an automorphism of O, and

Aq(h,—) only acts on the coefficients. It is not O, -linear, because if x € O, \ O, _,
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then we have h(z) # x if h # id and therefore
Aj(h,z-id) = h(x) -id # x - id = (A1 (h, 1 -id)).

It clearly is Op-linear, since the restriction of T, |p to O is, by definition, trivial.
For the O, -linearity of Aa(h,—)let Y z,-g9 € OF, [T, ] and y € OF, and compute

Ay | hyy Z zg 9| =22 | h, Z YTg - g

gETFMF gETFn\F

= Z yzg - (hg)

9€T R, |F

=Y Z zg - (hg)

gETFn|F

=yDy (B, Y xg-g

QETFn\F

To see that Ag(h, —) is not multiplicative in general, take a,b € Tp, |p and compute
Ay(h,1-ab) =1- hab

as well as

Ay(h,1-a)As(h,1-b) = h%ab

which are equal if and only if h = id.
To see that Ay and Ap commute, take h,k € Tp, |p and Y 24 -g € OF, [T, p] and

compute
Ay B A b Y agg| | =00k Y] ay (hy)
9€T py P 9€Tp, | F
9€T R, |F

=Ny | h, Y k(zg) g

9€ L py | F

=Ao | h, A1 | K, Z Ty g

9€T g, |F
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Next, we want to define a map analogous to the map yg | from [LZ14a, Definition
3.4, p.10| respectively y from [LZ14b, Definition 3.2, p.7|.

Definition 6.4.3.
We define the following map

pn: Op, ———=0F, [T g, F]

= Y, g ')y
9€Tp, | F

Lemma 6.4.4.

The map py s additive, injective and Op-linear but it is not O, -linear in general.

Proof.

That u, is additive is clear since g € T, |p is an automorphism on Op, and the
addition on O, [Y , ] is defined by adding the coefficients. It also clearly is injective,
since pn(z) = 0 implies g(x) = 0 for all g € T, |p which is only true for z = 0.

For y € Op it is g(y) = y for all g € T, |p by definition. Therefore we clearly have

g(yr) = yg(z)

for all x € Op,, i.e. py, is Op-linear.
To see that iy, is not O, -linear in general, let y € Op, \ Op, , and recall from the
Proof of the above Remark 6.4.2 g(y) # y for g # id. For 0 # = € Op, we then obtain

g(yr) = g(y)g(z) # yg(x)

which immediately implies p, (yx) # ypn ().
O

Following [LZ14b, p. 7] we define the Op-submodule of Of, [Yf, || in which the
actions from Definition 6.4.1 coincide. At [LZ14a, p.10] is also a description of this,

though it is less formal.

Definition 6.4.5.
We define
A=A
Sp = (OFn [TFn\F]) U

and equip S, with the subspace topology of Of,[Yf, r], where O, [T, |F] itself
carries the product topology of the mr-adic topology on OF, .
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Remark 6.4.6.

Because of Remark 6.4.2 the automorphisms Ai(h, —) for h € Yp,p of O, [Y 5, F]
then restrict to automorphisms of Sy,. Note that these automorphisms are topological.
With Corollary 6.4.8 this is immediately clear.

The automorphism Ay(oF,, —) will be called the Frobenius of S,,.

Remark 6.4.7.
For every n € N, the wr-adic topology on Or[Y,] coincides with the product topology
of the wr-adic topology on Of,.

The analogous statement holds true for O, [Y g, r].

Proof.
With ng, € Ny for g € T we have

Winin{ng}OL[Tn] - H WZQOL -9 C ngax{ng}oL[Tn]ﬂ
gETFn|F

which proves that the two topologies coincide.

The proof for O, [T g, |F] is the same. O

Corollary 6.4.8.
For every n € N, the topology on S, is the wr-adic topology.

Proof.

We will show that for every m € Ny we have
7p Sy = (77'OF, [TFn\F]) N Sp.

The inclusion ©7*S,, C (77'OF, [YF,|r]) N Sy is obvious. Now let h € Tp, . Then
Remark 6.4.2 says that Aj(h, —) is Op-linear and Ay (h, —) is even O, -linear. Let
r € O, [T, r] such that 'z € (7]'OF, [YF, r]) N Sy. Then we have

’/TznAl(h, x) = Al(h, Wz‘x) = Ag(h, Wznl') = WTAQ(h, ac)
Since OF, [T, |r] is a torsion free Op-module we then deduce
As(hyz) = Ao(h, ).

So we have x € S, and 7'z € 77'S,. The claim then follows immediately from the
above Remark 6.4.7. O
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Lemma 6.4.9.

Multiplication within OF, (Y, p] induces a map Op[Y,] x S, — S, by which Sy,
becomes an Op[Y,]-module. Moreover, the additive map p, from Definition 6.4.3
induces an isomorphism of the Op[Y,]-modules OF, and S,, which respects the

Frobenii on both sides, i.e. we have

pin(0F, (2)) = A1(0F,, pin(2))

for all x € OF,.

Proof.

With Lemma 6.4.4 it remains to show, that p, is Op[Y,]-linear and its image is S,,.
We start with computing the image of .

Let x € O, and h € Tp,|p. Then

Av(h () = A1 [ By DY g7 @) g

QETFn|F
= > hgl@)yg
QETF‘n\F‘
= S (hlg) i) (hhg)
9€T R, |F
=Y o) (hg)
9€ T p, | F

=Ny | by Y gM@)yg

9€ g, |k

= Ag(h, pn())-

So, the image of i, is contained in S,,. For the other inclusion let )"z, - g € S, and
h € T, p. Since the actions A; and Ay coincide on S, by definition, we obtain that

Z Ty 9= Z zy- (hh™'g) e Z h(xy)- (R tg)= Z h(zpg) - g,

9€ T p, | F 9€ Y p, P 9€ T p, P 9€ T p, | F

i.e. that h(zpy) = x4 for all g € T, | which is equivalent to zp, = h=(z,) for all
g € T, and implies in particular z; = h~Y(z1). Therefore we get

Yooageg= Y g7 m1) g = pnla).

g€ p, P 9€ T p, P
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Since g, by Lemma 6.4.4 is additive and Op-linear it remains to show that it also is

Y, p-linear. For z € Op, and h € Tp,|p, we compute similar as before

pa(h(@)) = > g (h(@)-g= D hg ' (z)- 9= Ailh pa()),

9€Tp, | F 9€Tp,|F

where we use at the second equality that T, | is abelian. The statement on the

Frobenii then is the computation above with h = op,,. O

Lemma 6.4.10.

OF, is for each n € N a free rank 1 module over Or[Y g, F|.

Proof.

As mentioned in the proof of [LZ14b, Proposition 3.5, p. 8], this is a consequence of
Theorem 6.3.6:

Since F,|F' is unramified of degree p™, Theorem 6.3.6 says that there is an element
r,, € OF, which is a normal basis generator of F},|F, i.e. (g(zn) | g € Yp,|r) is an Op-
basis of O, . Then every element of O, can be written in the form ZQGTF,,L\F agg(xn),

with a, € O, i.e. the Op[Yf, |p]-linear map.

OF[TFR\F] —0p,, > Qg - grH——> > agg(l‘n)
9€T R, |F 9€T R, |F

is bijective. O

Corollary 6.4.11.
For every n € N, the mr-adic topology on OF, and its topology as OF[TFH‘F]—module

coincide.

Proof.

This now is an immediate consequence of Lemma 6.4.10 and Remark 6.4.7. O

Corollary 6.4.12.
For every n € N, the isomorphism of OL[Y g, r]-modules pi,: OF, — Sy is topological

and the canonical inclusion S, — Op,[Y g, ] has closed image.

Proof.

Corollary 6.4.8 and Corollary 6.4.11 together say that the isomorphism between O,
and S, induced from pu, is topological. Since Op, is compact with respect to the
mr-adic topology, S, is compact as well and so is its image in Op, [T Fol r), which then

also is closed, since O, [Y f,|p] is a Hausdorff space. O
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Remark 6.4.13.
Note that the above Corollary 6.4.12 says that S, is compact, since O, is compact

and [y 1S a topological isomorphism.

The next step is to see that the .S, give rise to an inverse system. Due to the above
Lemma 6.4.9 this is equivalent to that the Op, form an inverse system with respect
to the trace maps. For this, we prove [LZ14b, Proposition 3.3, p. 7-8| in our case.
Denote by =Z,, the Galois group of F,|F,_1 and let Tr,, denote the trace map from
Of, to Of, ,, ie.

Try: Op, —=0p, ,, z+——> Y g(x).
gEE,

Note that Tr,, induces a homomorphism Of, [Yr,_, ] = Or,_,[YF,_,|r] by applying
to the coeflicients. Furthermore, recall that the canonical projection pr,,: Tp, p —

T,_1 induces a homomorphism of rings

Or[Trpl —=Or[Yp,_ypl, X0 2g-9— 32 . Ty |-h
9€T R, | F h€YTn_1 \ 9€TF,|F
g=h

which we also will denote by pr,,.

Remark 6.4.14.

The trace map Tr, commutes with the corresponding Frobenii, i.e. for everyn € N

we have
Trpo0p, =0F, , oTry,.
Proof.
This follows immediately from or,|r, , = 0F, . O

Proposition 6.4.15.
(OF,, Try)p is an inverse system of Op-modules with surjective transition maps.

Moreover, the composition of homomorphisms
1220 pr,
Or, — O0r,[Yp, r] —= OF,[TF,_,|F]

has image in O, ,[YF,_,|Fl, i-e. pr,, induces a homomorphism S, — Sn—1 and the
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diagram

I
Op, ————= 5,

Try, i lprn

Hn—1

Op, , ———= Sh—1

is commutative. So in particular, (Sp,pr,)n i an inverse system of Op-modules with

surjective transition maps.

Proof.

For the first assertion, the only thing to prove isthe statement that the trace maps
are all surjective. The idea for this is at [LLZ14b, Proposition 3.5, p.8|. Since F,|F,—1
is, by definition, unramified, the corresponding extension of the residue class fields
ko, |ko By is separable. Therefore, the trace map between the residue class fields is
not zero (cf. [Stal8, Tag OBIE, Lemma 9.20.7|) and since it is ko, _ -linear it clearly
is surjective. Since O, and O, , are complete with respect to the mz-adic topology,
this then induces that Tr,, also is surjective.

For the second assertion let x € O, and compute

pro(pn(@) =pr, [ Y. g '@ g)= D> | D gl |-h

QETFn|F heYn_1 geTFn|F
g=h

For every h € T,,_1 fix now a lift he Yp, r- In particular, if g € T, g, such that
g mod Z,, = h, then we can find r € =, such that g = rh. Then we can rewrite the

above equation to
i) = ¥ (L) e (L)
heYp_1 \reg&, heYp_1 r€En
Because of
rEER

and since T, preserves Op,_, we then get pr,,(1un (7)) € OF,_,[Tx,_,|r| as desired.

Furthermore, we observe

pry, (pn(2)) = Z h_lTrn(x) b= pin—1(Trn(z))
heYn_1

and since S,,_; is the image of u,—1 and Tr, is surjective, their composition O, —
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Sn—1 is also surjective. So, pr,,: S, — Sp—1 also has to be surjective. O

Definition 6.4.16.
As in [LZ14Db, Definition 3.4, p. 8|, we define the Yager module S, to be

S = yLnSn.
n

Remark 6.4.17.

Since for every n € N the Frobenius A1(op,,—) of Sy is a topological automorphism
and since these Frobenii commute with the transition maps of the inverse system
(Sn)n (cf. Remark 6.4.14) the projective limit Jm Ai(oF,,—) again is a topological
automorphism of So. We will denote this automorphism by @gs.. and its inverse by

s, -

The following Lemma is named as a well known fact in [LZ14b, Proposition 3.5,
p. 8|, but there is no reference. It is also mentioned in [LZ14a, Remark 3.3, p. 10]
and |LZ14a, Proposition 3.2, p.9-10] also fits in our situation. Nevertheless, we will

explain the proof using the theory of integral normal bases.

Proposition 6.4.18.
lim O, (and then also S ) is a free rank 1-module over Ay, (T).

Proof.

The idea is to construct a trace compatible system of elements z,, € Of, with
x9 Z 0 mod 7 Op. Because then it is TranwF(xn) # 0mod 7 Of and x, is an
integral normal basis generator of O, |Of (cf. Theorem 6.3.6) and therefore generates
Op, as Op[Y,]-module (cf. Lemma 6.4.10). Then (x,), generates Im Op, as
Ao, (T)-module and is in particular free of rank 1. The existence of such a system is
ensured by the surjectivity of the involved trace maps (cf. Proposition 6.4.15):

We start with an element xg € O such that xg # 0 mod 7, Op. Assuming we have
xn € Op, such that TrOanF(xn) # 0 mod 77,0 we choose an element z,,11 € Of,_,

such that Trg, (Tn41) = Ty Then it is

+1‘OFn
Tro,. (0, (@nt1) = Trop, 0, (2n) # 0 mod 7,0
O

As in [LZ14b, Proposition 3.6, p.8| So can be realized as a submodule of

A6Foo (1) = lim O, [T 5, r]. We will explain this below.
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Remark 6.4.19.

The canonical inclusion Soc — Ay (T) is a topological embedding with closed image.

oo

Proof.

Since all the S,, are compact (cf. Remark 6.4.13), their projective limit Sy, is compact
as well. Furthermore, A@Foo (T) is a Hausdorff space since all the Op, [T 5, F| are
Hausdorff spaces and therefore the embedding So, — A@Foo (T) is topological with

closed image. O

Remark 6.4.20.
As in Definition 6.4.1 we can define two actions from YT on F)Foo [Yr,r] and then

also on A@F (T), which we again denote by Ay and As respectively.
For every n € N denote by 0,, the Galois group of F|F,.

Lemma 6.4.21.

For every n € N it is
Or [T r p) 722 = Op, [T, 6] 21752,

Proof.

This is an outline of the last sentence of [LZ14b, Proposition 3.6, p. 8|.

For the inclusion Op, [TFn|F]A1:A2 - 61:00 [TFMF]AFAZ’ is nothing to prove. For the
other inclusion, first note, that Tp, | = T/6, and therefore multiplication with
elements from O, is trivial on Tp,|p. This then means, that ©, acts trivial on
61:00 [YF,|r] through Ag. In particular, for h € ©, and ) z,-g € 61:00 (Y r, 7] we
have

Ag | h, Z zg-9 | = Z zg - (hg) = Z Tg- Q.

9€T R, |F 9€T R, |F 9€Tp,|F

If now ) z4-g € Op.. [TFn‘F]AFA?, we can compute

Z g9 =2z | h, Z Tg-g

gGTpn‘p geTFn\F

= A1 | A, Z Tg-g

9€T R, |F

= Z h(zg) - g.

9€ T p, P
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~ On
So we get h(wy) = x4 for all g € Tp p and h € Oy, ie. x4 € (OFOO) for all

—~ On
g € YTp,r and because of (OFOO) = Op, (cf. Lemma 3.2.11) we have z, €
O, for all g € Tg,|p. So we can conclude Y z,-g € Op,[Yf, r] and therefore
Op., (Y p]21 752 = Op, [T i, p] 17402 O

Proposition 6.4.22.
The canonical inclusion Soe — A@F (T) induces a topological isomorphism

Soo 2 (Ag, _(T))1=52, -

Proof.
Since the canonical inclusion Se < Ag (T) is a topological embedding (cf. Re-

mark 6.4.20), it only is to check that itscximage is (Ag, (T))A1=22, As stated in
|[LZ14b, Proposition 3.6, p. 8], to see this it is enough to show 6Foo [TFH‘F]AFA? =
Or, [TFH‘F]AFAQ what is Lemma 6.4.21. O

The following remark is from [LZ14b, p.8§|.

Remark 6.4.23.
Let E|L be a finite extension and 7: Y — E* a continuous character, i.e. a continuous
group homomorphism. Then T induces a homomorphism

A (T) = Op, ®9, Op

OFy
which we also will denote by T.
Following [LZ14b, p. 8], we can make the same observation.

Proposition 6.4.24.
Let E|L be a finite extension, T: T — E* be a continuous character and Q € S.
For o € T we then have

o(r( @) = 7(0)r(Q),

i.e. T(Q) is a period for the character 771,

If Q is a generator of Seo as Ao, (Y)-module, then we have n(2) # 0 mod 7y, for all

continuous characters n: T — E*.

Proof.
This is exactly [LZ14b, Proposition 3.7, p.8-9|. O
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6.5 WACH MODULES

As in [LZ14b, Section 3.3, Section 3.4, p.9-11] we want to make use of the theory of
Wach modules. The references for our situation are [KR09, Corollary 3.3.8, p. 460)|
and [SV19, p.6-19].

The following proposition and definition are straight generalizations of [SV19, p. 6-7].

Proposition 6.5.1.

Let E|L be a finite extension. For V & Repgis’an(GE) exists a module
N (T) € Mo ZI}F(AJEF|L) such that the (¢ g1, 'p)-structure of N1 (V) is induced
from the one of Mg (V) and we have

Api®@ar Npp(V) = MgiL(V).

Definition 6.5.2.

Let E|L be a finite extension. For V € Repgis’an(GE) the module
Nei(V) € ModZI}F(ABL) from the above Proposition 6.5.1 is called the Wach
module of V over E.

Remark 6.5.3.
As in [SV19, Proposition 1.8, p. 8-10] one can prove that Ng (V') for V € Repgis’an(GE)
is unique inside Mg, (V') with the properties described in Proposition 6.5.1.

Remark 6.5.4.

We want to topologize the Wach modules in the same way as in [LZ14b, p.9]. Since
we discussed the weak topology in detail, this fits into a greater picture:

Let E|L be a finite extension and V € Rep(cjris’an(GE). As all other modules on
the (pp|L,T'E)-side, we want to equip Ng (V) with a weak topology. To do this
consistently, we define it to be the induced topology from Mg (V), where Mg (V)
carries its weak topology. Since N (V) is a finitely free AJErlL—module and the weak

topology on AJECM is the topology defined by the ideals (7, w¢)”AaL forn >0, a basis

_l’_
E|L

for n > 0. This then coincides with the topology of loc. cit.

for the weak topology on Ng (V) is given by the Ay, | -submodules (mp,we)"NgL(V)

Remark 6.5.5.
Recall Q4 = Wiz% from the beginning of this chapter. By definition, we then have

pr(wy) = Qowy. .
If E|L is a finite extension, T € Repy, *(Gp) and V = T[1/7r] recall also

that we denoted by p*Ng (V) the AE|L—subm0dule of Ngio(V)[1/Qg] generated

by im(‘PNE|L(V))- Using the projection formula for meL(V) (c¢f. Remark 4.2.3) and
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the fact that AJEC|L is stable under Y1, gives a -operator

Ung vy @ Ne (V) = Npj (V).

If all Hodge-Tate weights of V' are > 0, we have Ng (V') € ¢*Ng(V), i.e. VN L (V)

restricts to an endomorphism of NE‘L(V) and we obtain a homomorphism
- % = TL
Npp (1)Y= = ("N (V)= 2 =2 — quSONE‘L(v)(J«")-

Lemma 6.5.6.
Let E|L be a finite and unramified extension and let V € Repgi’f)(GE). Then there

exists a canonical isomorphism of (¢, E)-modules
Mg (V) =ML(V) ®o, Op,

where ¢ on the right hand side is @y, (v) ® o, with og|r, the Frobenius of the
unramified extension E|L, i.e. the element of the Galois group which raises an

element to its qr,-th power modulo my,.

Proof.
The proof is the same as in [LZ14b, Lemma 2.4, p. 4-5]. O

Lemma 6.5.7.
Let E|L be a finite and unramified extension and let V € Repgis’an(GL). Then there

exists a canonical isomorphism

NeiL(V) =2 Np(V) ®o, Op.

Proof.
With Lemma 6.5.6 this is an immediate consequence of the uniqueness property of
Ng(V) inside Mg (V) (cf. Remark 6.5.3). O

As in [LZ14b, p.9] we are interested in the Wach modules over O, . The above
Lemma 6.5.7 says that they have a special structure coming from the Wach module
over L. If T € Repgis’an(GL) it then is clear from Proposition 6.4.15 that the
Np, (1) form an inverse system with surjective transition maps, which then leads
to the following definition (cf. [LZ14a, Definition 3.10, p. 11]).

Definition 6.5.8.

Ne (1) = lim Ng, . (T).
neN
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Remark 6.5.9.
Let T € Repgis’an(GL). Then Lemma 6.5.7 says that we have

Ne (1) 2 Np i (T) ®op, OF, -
With Lemma 6.4.9 this then transforms into
N, (1) 2 N (T) @0y Sn-

We now would like to have a similar description for NFOO|L(T)- Let for this a be the
ideal of A;C|L ®op Mo, (Y) generated by (71, wg, v — 1), where v is a topological gener-
ator of Y. We denote the completions of AJI§|L ®0p Nop(T) and Np 1 (T) ®o . Soc with
respect to the a-adic topology by A;ClL@oFAoF(T) and NF|L(T)®OFSOO respectively.
The idea for this construction is taken from [LZ14b, p.9|, which unfortunately is no
longer a part of the newer version |LZ14a].

Note that both AJFF‘L@)OFA@F(T) and NF‘L(T)@)@FSOO are compact since the quotients
A;|L®OFAOF(T)/(7TL7"U¢7U —1)"™ are finite for all n € N.

Note also, that since A;|L®OF Ao, (T) and Np|(T) ®0, Soc are Hausdorff spaces, the
canonical homomorphisms A;|L ®0, Mop (1) — AJ}«:\L@OFAOF(T) and Np|(T) ®o,
Soo — NF|L(T)(§>OFSOO are ingective (cf. |Bou89a, Chapter III, §3.4, Theorem 1,
p.248] ).

Proposition 6.5.10.
Let T € Repgis’an(GL). We then have an isomorphism

Npo 2 (T) = Npy(T) R0 1 Soo-

Proof.

The idea is the same as in [LZ14b, Proposition 3.12, p.9-10] which did not make
its way to [LZ14a, Proposition 3.11, p. 11-12|. Therefore, we recall it here for our
situation.

Fix n > 0. Since the natural projection S, — S, is surjective (cf. Proposition 6.4.15)

it clearly induces a surjection
NpL(T) ®op Seo = Npjp(T) @0 Sn = Np, (1),

which commutes with the transition maps from the inverse system, since the projection
Seo = Sy, does. The kernel of the canonical projection So, — S, is the Ag, (T)-

submodule (Upn — 1) S and since S, is a free and therefore flat Op-module, the
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kernel of the above homomorphism is the A22| ; @op Ao, (T)-submodule
(Upn — 1) NF\L(T) Rop Soo-

Since Np|(T) ®o, Seo is a Hausdorff space and Np, (1) is complete (with respect
to their respective weak topologies), the above homomorphism induces a continuous

homomorphism

NpL(T)®0, S0 = N, (T)

(cf. [Bou89a, Chapter III, §3.4, Proposition 8, p.248|). It clearly is also surjective,
since Np|(T) ®0, Soo = N, |(T) is and the diagram

Npip(T) ®op Sec = Np(T )®0 S0

is commutative. This homomorphism then again commutes with the transition maps

of the inverse system (Ng, (1)), and therefore induces the homomorphism

Npp(T)®0,S00 — Np (1),

Since the involved modules are compact (cf. Remark 6.5.9 for Np (T ) @0, Seo and
Np.n(T) is compact since all the N, |1(T') are compact) this is still surjective with
kernel

() (" = 1) NpyL(T) ®o, S = {0}

neN
Since it’s bijective and continuous and the involved spaces are compact Hausdorff

spaces, it is a topological isomorphism. O

6.6 THE REGULATOR MAP

The aim of this section is to define a regulator map similar to [LZ14a, Definition
4.6, p.16]. Unfortunately we cannot adopt their whole constructing since in our
situation we have no result similar to [LZ14a, Proposition 3.12, p.12] because in the
general Lubin-Tate case it is not known if there exists an Ap-basis (u1,...,uq, ) of
©or,(Ar) such that 1y (u;) = d1;. Therefore, we make a similar construction to [SV19,
p. 71] using the ring R, which are the power series over a complete extension of L,
converging on the open unit disk (for a precise description see [SV19, Section 2.2.1,

p.36-40]). This ring then has the above described property and in Lemma 6.6.4 we
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prove the statement which in our case plays the part of [LZ14a, Proposition 3.12,
p.12].

Lemma 6.6.1.
Let T € Repgis’an(GL) such that T has no quotient isomorphic to the trivial repre-
sentation and such that all Hodge-Tate weights of V := T[1/7r] are > 0. We then
have

Hiy(FooLoo| L, T) 2 Np 1 (T(77 1)Y=

Proof.

From Theorem 4.3.13 we deduce
Hllw(FnLOO|Fm T) = MFn\L(T(Til))d):l

for every n € N. Since the intermediate fields of F,, L|F, are clearly a subset of the

intermediate fields of F}, Lo|L, they are also cofinal and therefore it is
H}\ (FnLoo|Fy,, T) = Hi, (FLoo| L, T).

As in [SV19, Lemmal.30, p.21-22| (here we need the assumption that 7" has no

quotient isomorphic to the trivial representation) one then shows
M, £ (T(r™ )= = N o (T(r 1))~
Taking projective limits then gives us
Hiy(FooLoo| L, T) 2= Npp (T (1)) ¥,

O

For the construction of the regulator map we need some more notation and
observations from [SV19| respectively from [Coll6]. In particular, we recall from
[SV19, Section 2.2.1, p. 36-40] the notion of the Robba ring and some properties of it.
For this overview let K be a complete extension of L. Then we denote by 9%;2 the
subring of X[Z] consisting of those the power series converging for all z € C, with
absolute value less than 1. For on Interval I C [0, 1], we denote by RL. the ring inside
K[Z, Z~'] consisting of those elements converging for z € C, with absolute value in
I. For fixed r € (0,1) we then set

rl) . . T,
Ry = lm Ry

r<s<l
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and

Ree = | RV

O<r<1

Recall from [Col16, p. 10] that we have Rx = R} N K[Z]. We do also have a ¢- and
a Y-operator on Ry which we again denote by ¢, and 1y, respectively (cf. [Coll6,
p.11]). They clearly restrict to endomorphisms of SRJJE and fulfill a projection formula
similar to one from Remark 4.2.3. Let € C,, be the period of a fixed generator ¢ of
the dual of the Tate module TG,. This means, that the power series attached to t/
starts with QX + -+ (cf. [STO1, p.457]) and for b € O, we set (cf. [Coll6, p.9])

n(b, Z) = exp(bQlog;1(2)).

From [Col16, p.9] we then also deduce 7(b, Z) € Oc,[Z]*. By abuse of notation,
we also write n(b, Z) for b € O, /7,0y, instead of n(a, Z) where a € Oy, is a lift of b.
Note that n and 11, have the following correlation (cf. [Coll6, p. 11])

e if b
onio.zy) < |7 (Fo2) s fbemOr

0, else.

If € K we deduce from [Coll6, p. 11]

Re= P 0 2)eL(Rx).
bEOL/ﬂLOL

In particular, for x € Ry we then have

r= 3 alb Denlbrin(-b, 2)z)).

beoL/WLOL

Since n(b, Z) is invertible in K[Z] and both, ¢, and ¢, are given by power series,

the above decomposition holds true for ng*{, i.e. if Q € K we have

Ri= @B b 2)er(Ry).
bEOL/ﬂLOL

Furthermore, recall from [SV19, p. 34] that we have an isomorphism
(Ry)¥*=" = Dy (', X).

Finally, by ¢r ® ¢g., and 11, ® s, respectively we then also have a - and a

1-operator on iR;E @0, Sco- These endomorphisms then extend by continuity to
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fR;g@o 500 On fR;g@o »Mo,(T) we then clearly can make a similar construction for

a - and Y-operator.

Lemma 6.6.2.

Let T € Repgis’an(GL) and V =T[1/wr]. Then we have a homomorphism
-0 ~ -0
- (R;(@OFSOO)Q/M QL Dcris,L(V) -

~ =0
(R(—Ci_p@)OFS’oo) ®L ®CriS7L(V)'

(@*NFM\L(V)W

Proof.
From [SV19, Corollary 1.14, p. 14-15] we deduce, that there is a homomorphism

NL(V) = RE @1 Deris, . (V),
which by tensoring with O induces a homomorphism
NpiL(V) = 0p ®9, No(V) = Op @0, Rf ®L Deris,z (V) = Rf O Deris, (V).
Together with Proposition 6.5.10 this induces a homomorphism
Npo (V) 2 Seo®0,NpL (V) = Sec®0, (RE®L Deris,r(V)) -
But since Deis,,(V) is a finite dimensional L-vector space we have
Seo®0y (Rf ®L Deris,1.(V)) = (Sec®0,R}) L Deris, (V)

and therefore we can show with exactly the same proof as in loc. cit. that there is a

homomorphism
* = =0 +3S Pr=0
(‘:0 (NF|L(V)®OFSOO)) — (:RF®OFSOO) L Dcris,L(V)-
Since So, is torsion free as Op-module, it is flat and therefore we get an inclusion
~ =0 ~ _
(REBoy520) "~ (2, By 520 ) 470

Together with the above homomorphism, this then gives us the desired homomorphism.

O
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Lemma 6.6.3.
The elements of REP®OFAOF (T) can be written in the form

> 0, Z)pr(w)

bGOL/ﬂ'LoL
with xp € ﬂzgp@@FAoF(T).

Proof.

It suffices to prove the claim for iR(JCrP ®0, Mo, (T), the statement for the completion
then follows by continuity.

So let z € fRa ®op Mo, (T) and write z = Y ", z; ® y; for some x; € iR(JCrp and
Yi € Ao, (T). Then, for every 1 <1i < m there exist :E,(f) € Rgp (cf. the discussion
above) with b € O /70Or such that

ri= Y nb.2er)).

bEOL/ﬂLOL

We then compute

I L ACONED

=0 beoL/ﬂ'LOL

= > b2 (i oL <x§j)) ® yi>
=0

be0p /m0r
= > b 2)er (Z zy) ®y§> :
beOr /m0L =0

where y, € Ag,(T) is a preimage of y; for every 1 < i < m under the Frobenius on
Ao, (Y) (which is bijective cf. Remark 6.4.17 and Proposition 6.4.18). O

As described at the beginning of this section, the following Lemma is the main

difference to the construction of the regulator map in [LZ14a].

Lemma 6.6.4.
We have 0
o~ L—
(70

12

(%%, T B0 e

Proof.
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With the above discussion about the decomposition

:R(a, = @ n(b’ Z)(PL(R(?EP)a
bEOL/ﬂLOL

this proof is nearly analogous to the proof of [LZ14a, Proposition 3.12, p.12].
In Proposition 6.4.18 we saw that S is a free rank one module of Ay, (T), say with

basis €. Since
RE B0, 900 <R+ ®opAo (I)) Qpt (R+ ®o Soo>
C, P0F C,¥0rop RE @0 0o, (T) \7°C, POF

(cf. [Mat70, Theorem 55, p. 170]) the elements of REP(@@F Soo are of the form z(1® &)
with = € Rgp@JOFAOF(T). Then for every b € Or /w0 let ap € Rgp@oFAoF(T)
such that

T = Z n(b, Z)er(xy),

bGOL/ﬂLoL

(cf. Lemma 6.6.3). Applying 11, to such an element then gives us

Yr(z(1®€)) =L > 0, Z)er(m)(1©¢)

bEOL/WLOL

= Y v, 2)m(1® ¥s., (6))

beO L /mL0L
=1(0, Z)xo(1 ® Y5, (£))-

Since g, is an isomorphism on S (cf. Remark 6.4.17), we deduce that for
Yr(x(1 ®€)) =0 it must be g = 0. Therefore we have

= Y b2,

bG(OL/ﬂLoL)X

Yr=0

ie. z(1®€) € (:Rgp) B0, Soo- O

Lemma 6.6.5.

We have an injective homomorphism
L\Yr=0 ~
(%5,)" Bop S Di(TL, Cp)B0, D, (T, C,p).

Proof.
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From the discussion before Lemma 6.6.2 we deduce the isomorphism

Yr=0
(%&,)" =Du(rLCy)
As in [LZ14a, p. 15] we have a continuous inclusion

S A5 (1) Dy, (T, Foo).

OFy

. . . YL=0 .
Since REP is torsion free as O p-modules, (Rgp) is also torsion free as O p-module.

So in particular, it is flat and we get an inclusion
d}L:O ’d)L:O —
(fRép) Rop Soo— (fRép) Rop DQP(T, Foo)
Since projective limits are left exact, this inclusion extends to the completion and so
we get the desired inclusion by composing the above homomorphisms

Yr=0

o)

®OFDQ1J (T7 ﬁ;)

(ngp)mzo Bop S (:Rgp)

o i> DL(FLv (Cp)@OFDQp(T?f;)C—) DL(FLv Cp)®OFDQp(T7CP)'

Definition 6.6.6.
Let T € RengiS’an(G 1) and V = T[1/7z] such that T has no quotient isomorphic to
the trivial representation. We define the regulator map LEL T as the composite of

the above discussed maps:

H} (FooLoo|L, T) = N o (T(771)) 9=
(" Npo (V1)Y=
(REB0,5)" ™" @1 Derisn(V(r 1)

R 0
—— <REP®OFSOO) QL Dcris,L(‘/(T_l))

P=0
(%) ®op 5o ©1 Derie,n(V(r )

= D1(T'1, Cp)&0, Dg, (T, Cp) @1 Deris,n(V(771)-

Following the order of appearance above, these maps are subject of Lemma 6.6.1,
Remark 6.5.5, Lemma 6.6.2 (line 3 and 4), Lemma 6.6.4 and Lemma 6.6.5 respectively.
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The following theorem is the analogue of [LLZ14a, Theorem 4.7, p. 16-17] adapted

to our situation.

Theorem 6.6.7.

Let T € Repgis’an(GL) and V =TI[1/my] such that T has no quotient isomorphic to
the trivial representation. Then the regulator map LEL’T from the above Definition
6.6.6 is a homomoprhism of Ao, (I'r, x T)-modules and has the following two properties

which uniquely determine this homomorphism:

1. If E|F is a finite, unramified extension contained in Foo Koo, we get a commu-

tative diagram

rp,Y

H}\ (FooLoo|L,T) ——— D1 (T'1,,C,)®0, Dg, (T, Cp) @1 Dexis,r.(V(T71))

l’ LFLvTE Jf

HIlW(ELOO’L7T) - DL(FLa(CP)@OFDQp(TE,(CP) Xr Dcris,L(V(Til))v

where T g = Gal(E|F) and L3 is defined in the same way as L7

2. For x € H{,(FLoo|L,T) and a character n: Ty, — C, the function
W = LEL’T@)(H ® w) is a bounded Qp-analytic function.

Proof.
The proof of [LLZ14a, Theorem 4.7, p. 16-17| translates to our situation. O

The goal now is to establish an analogous result to [LZ14a, Theorem 4.13, p. 20].
To do this, we adapt the relevant statements from [LZ14a| to our situation. The
proofs in our situation are all analogous and we only cite the relevant parts from
|[LZ14a]. To simplify a comparison, we cite all the statements of [LZ14a| which have

an input to [LZ14a, Theorem 4.13, p.20] and translate them into our situation.

Lemma 6.6.8.
Let T € Repgis’an(GL) and let M be a finitely free Op-module with a continuous
action from Y via a homomorphism Ao, (T) — Endg, (M). We then have canonical

isomorphisms

~ T
Npi(T) ®o (OFOo ®o, M) = Np(T ®o, M)

and

M @0, Np1o(T) £ N 1.(M ®0, T).
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Proof.

Since taking Wach Modules is a ®-functor (cf. [KR09, Corollary (3.3.8), p.460]),
the first isomorphism is obtained exactly as in [LZ14a, Proposition 3.13, p. 13]. The
second is [LZ14a, Theorem 3.15, p. 13]. O

Proposition 6.6.9.
Let X|L be a finite extension and w: T — O% a continuous homomorphism. Then the

following diagram commutes

Tz, Y

c
Ox ®o, Hly(FsoLoo|L, T) “> X ®1, Dr(T'1, Cp)®0, Da, (T,Cp) @L Deris,n(V(771))

| L |

Hl (FosoLoo|L,T(w)) Dr(Tr,C, )@oFD@p(T,Cp ®L Deris.r.(V (771w))

Proof.
This is the same proof as the one of [LZ14a, Proposition 4.12, p. 19]. O

Corollary 6.6.10.
Let X|L and E|F be finite extensions such that E is unramified and contained in
FoKs and let w: T — O% be a continuous homomorphism.Then the following

diagram commutes

FyAes R
HL (FaoLoo|L,T) v Dr(T'p, )80, Do, (T, Cp) @1 Deris £ (V (7))
HIlw(ELoo|L, T(w)) E—— DL(FL, (Cp)®OFD@p(TE, Cp) R Dcris,L(V(T_lw))

Proof.
As mentioned before |[LZ14a, Theorem 4.13, p. 20| this now is an immediate conse-

quence of Theorem 6.6.7 and Proposition 6.6.9. Precisely we obtain the following



CHAPTER 6. REGULATOR MAPS 201

commutative diagram

.,

L .
Hl (FLoo|L,T) 4 Dr(T1,Cp)®0,Dg,(T,Cp) L Deris, o (V(T71))

FayAss

Ox RKor HIIV\](FOO-LOO‘L7 T) L. L DL(FLu Cp)@OF‘DQp(T’ (Cp) QL DCris,L(V(T_l))

Ty, Y
V(w)

Hi, (FooLoo| L, T'(w))

Dr(T',Cp)®0,Dg, (T,Cp) @1 Dexis,r. (V (17 1w))

I'p.Tg
V(w)

H (ELos|L, T(w))

Dr(T'r,,Cp)®0,Dq,(YE,Cp) OL Deris,r(V (7 1w)),

where the vertical maps in the upper square send an element = to 1 ® x. Therefore
the upper square commutes evidently. The middle square commutes because of
Proposition 6.6.9 and the latter because of Theorem 6.6.7. O
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Rep{ ™ and X|L finite. 189
PSeo
= lim Ay(oF,), Frobenius of Sy. 186
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Prime element of the finite extension X|Q,. 51
L
= (mp mod 71,0c, )n € OC;, where mg = 77, and 7" | = m,. 171
¢Col
Unique endomorphism of O [Z] with
(kL ovea) (@)= Y flats, 2)
a€9¢[7rL]
for all f € O[Z]. 87
Q;Z)Col
= o]y, © Yool = fice 0 Oy 88
()
= %gb;{l‘L o Tr, where Tr is the trace map of By |1 |bk|(BK L) 95
Q/)J\DE\L(V)
From Q,ZJMML(V) induced homomorphism from ¢*Ng| (V) to Ny (V), where
V € Rep] ™™ and X|L finite. 190
Vs,
inverse of the Frobenius ¢g_ of S.. 186
Qp

Field of p-adic numbers. 51
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Repfof)(G)
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Repy,:" (G)
Category of finite free G-representations of O, where G is a group. 169
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Full subcategory of Rep(Lfg)(GL) consisting of the crystalline and analytic
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The image of the complex €® in the derived corresponding category. 145
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RIT, (KX, T)
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R
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52
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Tensor product in the derived category over the ring R. 155
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Tate module of G4. 52
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Galois group of Fi|F),. 187
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p p
T(7p — 7). 171
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Tr,F

Galois group of F,,|F, where F'|L unramified and F),|F is the unique unramified

extension of degree p™. 169
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Functor from Mod‘iF(quL) to Repgf) (Gy) with Vac(M) = (A B A, M)Fr®<pM=1> :
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W)L
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Xas(G, A)
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Integral p-adic numbers. 51
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